Abstract:In recent years, large amounts of data have been generated, and computer power has kept growing. This scenario has led to a resurgence in the interest in artificial neural networks. One of the main challenges in training effective neural network models is finding the right combination of hyperparameters to be used. Indeed, the choice of an adequate approach to search the hyperparameter space directly influences the accuracy of the resulting neural network model. Common approaches for hyperparameter optimization are Grid Search, Random Search, and Bayesian Optimization. There are also population-based methods such as CMA-ES. In this paper, we present HBRKGA, a new population-based approach for hyperparameter optimization. HBRKGA is a hybrid approach that combines the Biased Random Key Genetic Algorithm with a Random Walk technique to search the hyperparameter space efficiently. Several computational experiments on eight different datasets were performed to assess the effectiveness of the proposed approach. Results showed that HBRKGA could find hyperparameter configurations that outperformed (in terms of predictive quality) the baseline methods in six out of eight datasets while showing a reasonable execution time.
Abstract:Applying machine learning models to meteorological data brings many opportunities to the Geosciences field, such as predicting future weather conditions more accurately. In recent years, modeling meteorological data with deep neural networks has become a relevant area of investigation. These works apply either recurrent neural networks (RNNs) or some hybrid approach mixing RNNs and convolutional neural networks (CNNs). In this work, we propose STConvS2S (short for Spatiotemporal Convolutional Sequence to Sequence Network), a new deep learning architecture built for learning both spatial and temporal data dependencies in weather data, using fully convolutional layers. Computational experiments using observations of air temperature and rainfall show that our architecture captures spatiotemporal context and outperforms baseline models and the state-of-art architecture for weather forecasting task.
Abstract:In mulsemedia applications, traditional media content (text, image, audio, video, etc.) can be related to media objects that target other human senses (e.g., smell, haptics, taste). Such applications aim at bridging the virtual and real worlds through sensors and actuators. Actuators are responsible for the execution of sensory effects (e.g., wind, heat, light), which produce sensory stimulations on the users. In these applications sensory stimulation must happen in a timely manner regarding the other traditional media content being presented. For example, at the moment in which an explosion is presented in the audiovisual content, it may be adequate to activate actuators that produce heat and light. It is common to use some declarative multimedia authoring language to relate the timestamp in which each media object is to be presented to the execution of some sensory effect. One problem in this setting is that the synchronization of media objects and sensory effects is done manually by the author(s) of the application, a process which is time-consuming and error prone. In this paper, we present a bimodal neural network architecture to assist the synchronization task in mulsemedia applications. Our approach is based on the idea that audio and video signals can be used simultaneously to identify the timestamps in which some sensory effect should be executed. Our learning architecture combines audio and video signals for the prediction of scene components. For evaluation purposes, we construct a dataset based on Google's AudioSet. We provide experiments to validate our bimodal architecture. Our results show that the bimodal approach produces better results when compared to several variants of unimodal architectures.