Abstract:We propose a new framework for zero-shot generation of synthetic tabular data. Using the large language model (LLM) GPT-4o and plain-language prompting, we demonstrate the ability to generate high-fidelity tabular data without task-specific fine-tuning or access to real-world data (RWD) for pre-training. To benchmark GPT-4o, we compared the fidelity and privacy of LLM-generated synthetic data against data generated with the conditional tabular generative adversarial network (CTGAN), across three open-access datasets: Iris, Fish Measurements, and Real Estate Valuation. Despite the zero-shot approach, GPT-4o outperformed CTGAN in preserving means, 95% confidence intervals, bivariate correlations, and data privacy of RWD, even at amplified sample sizes. Notably, correlations between parameters were consistently preserved with appropriate direction and strength. However, refinement is necessary to better retain distributional characteristics. These findings highlight the potential of LLMs in tabular data synthesis, offering an accessible alternative to generative adversarial networks and variational autoencoders.
Abstract:Clinical data is fundamental to advance neurosurgical research, but access is often constrained by data availability, small sample sizes, privacy regulations, and resource-intensive preprocessing and de-identification procedures. Synthetic data offers a potential solution to challenges associated with accessing and using real-world data (RWD). This study aims to evaluate the capability of zero-shot generation of synthetic neurosurgical data with a large language model (LLM), GPT-4o, by benchmarking with the conditional tabular generative adversarial network (CTGAN). Synthetic datasets were compared to real-world neurosurgical data to assess fidelity (means, proportions, distributions, and bivariate correlations), utility (ML classifier performance on RWD), and privacy (duplication of records from RWD). The GPT-4o-generated datasets matched or exceeded CTGAN performance, despite no fine-tuning or access to RWD for pre-training. Datasets demonstrated high univariate and bivariate fidelity to RWD without directly exposing any real patient records, even at amplified sample size. Training an ML classifier on GPT-4o-generated data and testing on RWD for a binary prediction task showed an F1 score (0.706) with comparable performance to training on the CTGAN data (0.705) for predicting postoperative functional status deterioration. GPT-4o demonstrated a promising ability to generate high-fidelity synthetic neurosurgical data. These findings also indicate that data synthesized with GPT-4o can effectively augment clinical data with small sample sizes, and train ML models for prediction of neurosurgical outcomes. Further investigation is necessary to improve the preservation of distributional characteristics and boost classifier performance.
Abstract:This study presents a speech-based motion planning strategy (SBMP) developed for lower limb exoskeletons to facilitate safe and compliant human-robot interaction. A speech processing system, finite state machine, and central pattern generator are the building blocks of the proposed strategy for online planning of the exoskeleton's trajectory. According to experimental evaluations, this speech-processing system achieved low levels of word and intent errors. Regarding locomotion, the completion time for users with voice commands was 54% faster than that using a mobile app interface. With the proposed SBMP, users are able to maintain their postural stability with both hands-free. This supports its use as an effective motion planning method for the assistance and rehabilitation of individuals with lower-limb impairments.
Abstract:Objective: To assess the performance of the OpenAI GPT API in accurately and efficiently identifying relevant titles and abstracts from real-world clinical review datasets and compare its performance against ground truth labelling by two independent human reviewers. Methods: We introduce a novel workflow using the OpenAI GPT API for screening titles and abstracts in clinical reviews. A Python script was created to make calls to the GPT API with the screening criteria in natural language and a corpus of title and abstract datasets that have been filtered by a minimum of two human reviewers. We compared the performance of our model against human-reviewed papers across six review papers, screening over 24,000 titles and abstracts. Results: Our results show an accuracy of 0.91, a sensitivity of excluded papers of 0.91, and a sensitivity of included papers of 0.76. On a randomly selected subset of papers, the GPT API demonstrated the ability to provide reasoning for its decisions and corrected its initial decision upon being asked to explain its reasoning for a subset of incorrect classifications. Conclusion: The GPT API has the potential to streamline the clinical review process, save valuable time and effort for researchers, and contribute to the overall quality of clinical reviews. By prioritizing the workflow and acting as an aid rather than a replacement for researchers and reviewers, the GPT API can enhance efficiency and lead to more accurate and reliable conclusions in medical research.