Abstract:This study presents a speech-based motion planning strategy (SBMP) developed for lower limb exoskeletons to facilitate safe and compliant human-robot interaction. A speech processing system, finite state machine, and central pattern generator are the building blocks of the proposed strategy for online planning of the exoskeleton's trajectory. According to experimental evaluations, this speech-processing system achieved low levels of word and intent errors. Regarding locomotion, the completion time for users with voice commands was 54% faster than that using a mobile app interface. With the proposed SBMP, users are able to maintain their postural stability with both hands-free. This supports its use as an effective motion planning method for the assistance and rehabilitation of individuals with lower-limb impairments.
Abstract:Objective: To assess the performance of the OpenAI GPT API in accurately and efficiently identifying relevant titles and abstracts from real-world clinical review datasets and compare its performance against ground truth labelling by two independent human reviewers. Methods: We introduce a novel workflow using the OpenAI GPT API for screening titles and abstracts in clinical reviews. A Python script was created to make calls to the GPT API with the screening criteria in natural language and a corpus of title and abstract datasets that have been filtered by a minimum of two human reviewers. We compared the performance of our model against human-reviewed papers across six review papers, screening over 24,000 titles and abstracts. Results: Our results show an accuracy of 0.91, a sensitivity of excluded papers of 0.91, and a sensitivity of included papers of 0.76. On a randomly selected subset of papers, the GPT API demonstrated the ability to provide reasoning for its decisions and corrected its initial decision upon being asked to explain its reasoning for a subset of incorrect classifications. Conclusion: The GPT API has the potential to streamline the clinical review process, save valuable time and effort for researchers, and contribute to the overall quality of clinical reviews. By prioritizing the workflow and acting as an aid rather than a replacement for researchers and reviewers, the GPT API can enhance efficiency and lead to more accurate and reliable conclusions in medical research.