Abstract:Answer Set Programming (ASP) is a popular framework for modeling combinatorial problems. However, ASP cannot easily be used for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, where this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP, in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.
Abstract:Possibilistic answer set programming (PASP) extends answer set programming (ASP) by attaching to each rule a degree of certainty. While such an extension is important from an application point of view, existing semantics are not well-motivated, and do not always yield intuitive results. To develop a more suitable semantics, we first introduce a characterization of answer sets of classical ASP programs in terms of possibilistic logic where an ASP program specifies a set of constraints on possibility distributions. This characterization is then naturally generalized to define answer sets of PASP programs. We furthermore provide a syntactic counterpart, leading to a possibilistic generalization of the well-known Gelfond-Lifschitz reduct, and we show how our framework can readily be implemented using standard ASP solvers.
Abstract:Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program's constants. We define a fixed point logic (FPL) extension of Clark's completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (mu(L)GF). Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling for the first time, a characterization of an answer set semantics by muLGF formulas. We further extend the open answer set semantics for programs with generalized literals. Such generalized programs (gPs) have interesting properties, e.g., the ability to express infinity axioms. We restrict the syntax of gPs such that both rules and generalized literals are guarded. Via a translation to guarded fixed point logic, we deduce 2-exptime-completeness of satisfiability checking in such guarded gPs (GgPs). Bound GgPs are restricted GgPs with exptime-complete satisfiability checking, but still sufficiently expressive to optimally simulate computation tree logic (CTL). We translate Datalog lite programs to GgPs, establishing equivalence of GgPs under an open answer set semantics, alternation-free muGF, and Datalog lite.
Abstract:We extend answer set semantics to deal with inconsistent programs (containing classical negation), by finding a ``best'' answer set. Within the context of inconsistent programs, it is natural to have a partial order on rules, representing a preference for satisfying certain rules, possibly at the cost of violating less important ones. We show that such a rule order induces a natural order on extended answer sets, the minimal elements of which we call preferred answer sets. We characterize the expressiveness of the resulting semantics and show that it can simulate negation as failure, disjunction and some other formalisms such as logic programs with ordered disjunction. The approach is shown to be useful in several application areas, e.g. repairing database, where minimal repairs correspond to preferred answer sets. To appear in Theory and Practice of Logic Programming (TPLP).