Abstract:Answer Set Programming (ASP) is a popular framework for modeling combinatorial problems. However, ASP cannot easily be used for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, where this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP, in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.
Abstract:Possibilistic answer set programming (PASP) extends answer set programming (ASP) by attaching to each rule a degree of certainty. While such an extension is important from an application point of view, existing semantics are not well-motivated, and do not always yield intuitive results. To develop a more suitable semantics, we first introduce a characterization of answer sets of classical ASP programs in terms of possibilistic logic where an ASP program specifies a set of constraints on possibility distributions. This characterization is then naturally generalized to define answer sets of PASP programs. We furthermore provide a syntactic counterpart, leading to a possibilistic generalization of the well-known Gelfond-Lifschitz reduct, and we show how our framework can readily be implemented using standard ASP solvers.