Abstract:The causal dependence in data is often characterized by Directed Acyclic Graphical (DAG) models, widely used in many areas. Causal discovery aims to recover the DAG structure using observational data. This paper focuses on causal discovery with multi-variate count data. We are motivated by real-world web visit data, recording individual user visits to multiple websites. Building a causal diagram can help understand user behavior in transitioning between websites, inspiring operational strategy. A challenge in modeling is user heterogeneity, as users with different backgrounds exhibit varied behaviors. Additionally, social network connections can result in similar behaviors among friends. We introduce personalized Binomial DAG models to address heterogeneity and network dependency between observations, which are common in real-world applications. To learn the proposed DAG model, we develop an algorithm that embeds the network structure into a dimension-reduced covariate, learns each node's neighborhood to reduce the DAG search space, and explores the variance-mean relation to determine the ordering. Simulations show our algorithm outperforms state-of-the-art competitors in heterogeneous data. We demonstrate its practical usefulness on a real-world web visit dataset.
Abstract:Uplift modeling aims to measure the incremental effect, which we call uplift, of a strategy or action on the users from randomized experiments or observational data. Most existing uplift methods only use individual data, which are usually not informative enough to capture the unobserved and complex hidden factors regarding the uplift. Furthermore, uplift modeling scenario usually has scarce labeled data, especially for the treatment group, which also poses a great challenge for model training. Considering that the neighbors' features and the social relationships are very informative to characterize a user's uplift, we propose a graph neural network-based framework with two uplift estimators, called GNUM, to learn from the social graph for uplift estimation. Specifically, we design the first estimator based on a class-transformed target. The estimator is general for all types of outcomes, and is able to comprehensively model the treatment and control group data together to approach the uplift. When the outcome is discrete, we further design the other uplift estimator based on our defined partial labels, which is able to utilize more labeled data from both the treatment and control groups, to further alleviate the label scarcity problem. Comprehensive experiments on a public dataset and two industrial datasets show a superior performance of our proposed framework over state-of-the-art methods under various evaluation metrics. The proposed algorithms have been deployed online to serve real-world uplift estimation scenarios.