Abstract:In the digital era, with escalating privacy concerns, it's imperative to devise robust strategies that protect private data while maintaining the intrinsic value of textual information. This research embarks on a comprehensive examination of text anonymisation methods, focusing on Conditional Random Fields (CRF), Long Short-Term Memory (LSTM), Embeddings from Language Models (ELMo), and the transformative capabilities of the Transformers architecture. Each model presents unique strengths since LSTM is modeling long-term dependencies, CRF captures dependencies among word sequences, ELMo delivers contextual word representations using deep bidirectional language models and Transformers introduce self-attention mechanisms that provide enhanced scalability. Our study is positioned as a comparative analysis of these models, emphasising their synergistic potential in addressing text anonymisation challenges. Preliminary results indicate that CRF, LSTM, and ELMo individually outperform traditional methods. The inclusion of Transformers, when compared alongside with the other models, offers a broader perspective on achieving optimal text anonymisation in contemporary settings.
Abstract:In the realm of data privacy, the ability to effectively anonymise text is paramount. With the proliferation of deep learning and, in particular, transformer architectures, there is a burgeoning interest in leveraging these advanced models for text anonymisation tasks. This paper presents a comprehensive benchmarking study comparing the performance of transformer-based models and Large Language Models(LLM) against traditional architectures for text anonymisation. Utilising the CoNLL-2003 dataset, known for its robustness and diversity, we evaluate several models. Our results showcase the strengths and weaknesses of each approach, offering a clear perspective on the efficacy of modern versus traditional methods. Notably, while modern models exhibit advanced capabilities in capturing con textual nuances, certain traditional architectures still keep high performance. This work aims to guide researchers in selecting the most suitable model for their anonymisation needs, while also shedding light on potential paths for future advancements in the field.