GR
Abstract:Three-dimensional data have become increasingly present in earth observation over the last decades. However, many 3D surveys are still underexploited due to the lack of accessible and explainable automatic classification methods, for example, new topo-bathymetric lidar data. In this work, we introduce explainable machine learning for 3D data classification using Multiple Attributes, Scales, and Clouds under 3DMASC, a new workflow. This workflow introduces multi-cloud classification through dual-cloud features, encrypting local spectral and geometrical ratios and differences. 3DMASC uses classical multi-scale descriptors adapted to all types of 3D point clouds and new ones based on their spatial variations. In this paper, we present the performances of 3DMASC for multi-class classification of topo-bathymetric lidar data in coastal and fluvial environments. We show how multivariate and embedded feature selection allows the building of optimized predictor sets of reduced complexity, and we identify features particularly relevant for coastal and riverine scene descriptions. Our results show the importance of dual-cloud features, lidar return-based attributes averaged over specific scales, and of statistics of dimensionality-based and spectral features. Additionally, they indicate that small to medium spherical neighbourhood diameters (<7 m) are sufficient to build effective classifiers, namely when combined with distance-to-ground or distance-to-water-surface features. Without using optional RGB information, and with a maximum of 37 descriptors, we obtain classification accuracies between 91 % for complex multi-class tasks and 98 % for lower-level processing using models trained on less than 2000 samples per class. Comparisons with classical point cloud classification methods show that 3DMASC features have a significantly improved descriptive power. Our contributions are made available through a plugin in the CloudCompare software, allowing non-specialist users to create classifiers for any type of 3D data characterized by 1 or 2 point clouds (airborne or terrestrial lidar, structure from motion), and two labelled topo-bathymetric lidar datasets, available on https://opentopography.org/.
Abstract:Light Detection and Ranging (LiDAR) are fast emerging sensors in the field of Earth Observation. It is a remote sensing technology that utilizes laser beams to measure distances and create detailed three-dimensional representations of objects and environments. The potential of Full Waveform LiDAR is much greater than just height estimation and 3D reconstruction only. Overall shape of signal provides important information about properties of water body. However, the shape of FWL is unexplored as most LiDAR software work on point cloud by utilizing the maximum value within the waveform. Existing techniques in the field of LiDAR data analysis include depth estimation through inverse modeling and regression of logarithmic intensity and depth for approximating the attenuation coefficient. However, these methods suffer from limitations in accuracy. Depth estimation through inverse modeling provides only approximate values and does not account for variations in surface properties, while the regression approach for the attenuation coefficient is only able to generalize a value through several data points which lacks precision and may lead to significant errors in estimation. Additionally, there is currently no established modeling method available for predicting bottom reflectance. This research proposed a novel solution based on neural networks for parameter estimation in LIDAR data analysis. By leveraging the power of neural networks, the proposed solution successfully learned the inversion model, was able to do prediction of parameters such as depth, attenuation coefficient, and bottom reflectance. Performance of model was validated by testing it on real LiDAR data. In future, more data availability would enable more accuracy and reliability of such models.
Abstract:3D point clouds of natural environments relevant to problems in geomorphology often require classification of the data into elementary relevant classes. A typical example is the separation of riparian vegetation from ground in fluvial environments, the distinction between fresh surfaces and rockfall in cliff environments, or more generally the classification of surfaces according to their morphology. Natural surfaces are heterogeneous and their distinctive properties are seldom defined at a unique scale, prompting the use of multi-scale criteria to achieve a high degree of classification success. We have thus defined a multi-scale measure of the point cloud dimensionality around each point, which characterizes the local 3D organization. We can thus monitor how the local cloud geometry behaves across scales. We present the technique and illustrate its efficiency in separating riparian vegetation from ground and classifying a mountain stream as vegetation, rock, gravel or water surface. In these two cases, separating the vegetation from ground or other classes achieve accuracy larger than 98 %. Comparison with a single scale approach shows the superiority of the multi-scale analysis in enhancing class separability and spatial resolution. The technique is robust to missing data, shadow zones and changes in point density within the scene. The classification is fast and accurate and can account for some degree of intra-class morphological variability such as different vegetation types. A probabilistic confidence in the classification result is given at each point, allowing the user to remove the points for which the classification is uncertain. The process can be both fully automated, but also fully customized by the user including a graphical definition of the classifiers. Although developed for fully 3D data, the method can be readily applied to 2.5D airborne lidar data.