Abstract:Musical Instrument Identification has for long had a reputation of being one of the most ill-posed problems in the field of Musical Information Retrieval(MIR). Despite several robust attempts to solve the problem, a timeline spanning over the last five odd decades, the problem remains an open conundrum. In this work, the authors take on a further complex version of the traditional problem statement. They attempt to solve the problem with minimal data available - one audio excerpt per class. We propose to use a convolutional Siamese network and a residual variant of the same to identify musical instruments based on the corresponding scalograms of their audio excerpts. Our experiments and corresponding results obtained on two publicly available datasets validate the superiority of our algorithm by $\approx$ 3\% over the existing synonymous algorithms in present-day literature.
Abstract:The development of high-resolution imaging radars introduce a plethora of useful applications, particularly in the automotive sector. With increasing attention on active transport safety and autonomous driving, these imaging radars are set to form the core of an autonomous engine. One of the most important tasks of such high-resolution radars is to estimate the instantaneous velocities and heading angles of the detected objects (vehicles, pedestrians, etc.). Feasible estimation methods should be fast enough in real-time scenarios, bias-free and robust against micro-Dopplers, noise and other systemic variations. This work proposes a parallel-computing scheme that achieves a real-time and accurate implementation of vector velocity determination using frequency modulated continuous wave (FMCW) radars. The proposed scheme is tested against traffic data collected using an FMCW radar at a center frequency of 78.6 GHz and a bandwidth of 4 GHz. Experiments show that the parallel algorithm presented performs much faster than its conventional counterparts without any loss in precision.