Abstract:A site-specific radio channel representation considers the surroundings of the communication system through the environment geometry, such as buildings, vegetation, and mobile objects including their material and surface properties. In this article, we focus on communication technologies for 5G and beyond that are increasingly able to exploit the specific environment geometry for both communication and sensing. We present methods for a site-specific radio channel representation that is spatially consistent, such that mobile transmitter and receveiver cause a correlated time-varying channel impulse response. When modelled as random, this channel impulse response has non-stationary statistical properties, i.e., a time-variant Doppler spectrum, power delay profile, K-factor and spatial correlation. A site-specific radio channel representation will enable research into emerging 5G and beyond technologies such as distributed multiple-input multiple-output systems, reconfigurable intelligent surfaces, multi-band communication, and joint communication and sensing. These 5G and beyond technologies will be deployed for a wide range of environments, from dense urban areas to railways, road transportation, industrial automation, and unmanned aerial vehicles.
Abstract:Musical Instrument Identification has for long had a reputation of being one of the most ill-posed problems in the field of Musical Information Retrieval(MIR). Despite several robust attempts to solve the problem, a timeline spanning over the last five odd decades, the problem remains an open conundrum. In this work, the authors take on a further complex version of the traditional problem statement. They attempt to solve the problem with minimal data available - one audio excerpt per class. We propose to use a convolutional Siamese network and a residual variant of the same to identify musical instruments based on the corresponding scalograms of their audio excerpts. Our experiments and corresponding results obtained on two publicly available datasets validate the superiority of our algorithm by $\approx$ 3\% over the existing synonymous algorithms in present-day literature.