Abstract:The THz band (0.1-10 THz) is emerging as a crucial enabler for sixth-generation (6G) mobile communication systems, overcoming the limitations of current technologies and unlocking new opportunities for low-latency and ultra-high-speed communications by utilizing several tens of GHz transmission bandwidths. However, extremely high spreading losses and other interaction losses pose significant challenges to establishing wide-area communication coverage, while human body shadowing further complicates maintaining stable communication links. Although point-to-point (P2P) fixed wireless access in the THz band has been successfully demonstrated, realizing fully mobile and reliable wireless access remains a challenge due to numerous issues to be solved for highly directional communication. To provide insights into the design of THz communication systems, this article addresses the challenges associated with THz short-range mobile access networks. It offers an overview of recent findings on the environment-dependence of multipath cluster channel properties and the impact of human body shadowing, based on measurements at 300 GHz using a double-directional high-resolution channel sounder and a motion capture-integrated channel sounder.
Abstract:Rapid adoption of machine learning (ML) technologies has led to a surge in power consumption across diverse systems, from tiny IoT devices to massive datacenter clusters. Benchmarking the energy efficiency of these systems is crucial for optimization, but presents novel challenges due to the variety of hardware platforms, workload characteristics, and system-level interactions. This paper introduces MLPerf Power, a comprehensive benchmarking methodology with capabilities to evaluate the energy efficiency of ML systems at power levels ranging from microwatts to megawatts. Developed by a consortium of industry professionals from more than 20 organizations, MLPerf Power establishes rules and best practices to ensure comparability across diverse architectures. We use representative workloads from the MLPerf benchmark suite to collect 1,841 reproducible measurements from 60 systems across the entire range of ML deployment scales. Our analysis reveals trade-offs between performance, complexity, and energy efficiency across this wide range of systems, providing actionable insights for designing optimized ML solutions from the smallest edge devices to the largest cloud infrastructures. This work emphasizes the importance of energy efficiency as a key metric in the evaluation and comparison of the ML system, laying the foundation for future research in this critical area. We discuss the implications for developing sustainable AI solutions and standardizing energy efficiency benchmarking for ML systems.