Abstract:This paper presents a comprehensive measurement campaign aimed at evaluating indoor-to-indoor radio channels in dynamic scenarios, with a particular focus on applications such as autonomous ground vehicles (AGV). These scenarios are characterized by the height of the antennas, addressing the unique challenges of near-ground communication. Our study involves long-term measurements (20 minutes of continuous recording per measurement) of the channel impulse response (CIR) in the 60 GHz and 80 GHz frequency bands, each with a bandwidth of 2.048 GHz. We investigate the variations in channel characteristics, focusing on parameters such as root mean square (RMS) delay spread and the Rician factor.
Abstract:In this letter, we examine the effect of misalignment angle on cluster-based power delay profile (PDP) modeling for a 60 GHz millimeter-wave uplink. The analysis uses real-world data, where fixed uplink scenarios are realized by placing the transmitter at ground level and the receiver at the building level. Both outdoor-to-indoor (O2I) and outdoor-to-outdoor (O2O) scenarios are studied. Using the misalignment angle and the scenario as inputs, we propose a statistical PDP simulation algorithm based on the Saleh-Valenzuela model. Different goodness-of-fit metrics reveal that our proposed algorithm is robust to both O2I and O2O scenarios and can approximate the PDPs fairly well, even in case of misalignment.
Abstract:Millimeter wave (mmWave) technology offers high throughput but has a limited radio range, necessitating the use of directional antennas or beamforming systems such as massive MIMO. Path loss (PL) models using narrow-beam antennas are known as directional models, while those using omnidirectional antennas are referred to as omnidirectional models. To standardize the analysis, omnidirectional PL models for mmWave ranges have been introduced, including TR 38.901 by 3GPP, which is based on measurements from directional antennas. However, synthesizing these measurements can be complex and time-consuming. This study proposes a numerical approach to derive an omnidirectional model from directional data using multi-elliptical geometry. We assessed the effectiveness of this method against existing PL models for mmWaves that are available in the literature.
Abstract:Vegetation significantly affects radio signal attenuation, influenced by factors such as signal frequency, plant species, and foliage density. Existing attenuation models typically address specific scenarios, like single trees, rows of trees, or green spaces, with the ITU-R P.833 recommendation being a widely recognized standard. Most assessments for single trees focus on the primary radiation direction of the transmitting antenna. This paper introduces a novel approach to evaluating radio signal scattering by a single deciduous tree. Through measurements at 80 GHz and a bandwidth of approximately 2 GHz, we analyze how total signal attenuation varies with the reception angle relative to the transmitter-tree axis. The findings from various directional measurements contribute to a comprehensive attenuation model applicable to any reception angle and also highlight the impact of bandwidth on the received signal level.