Abstract:Adopting advances in recommendation systems is often challenging in industrial settings due to unique constraints. This paper aims to highlight these constraints through the lens of feature interactions. Feature interactions are critical for accurately predicting user behavior in recommendation systems and online advertising. Despite numerous novel techniques showing superior performance on benchmark datasets like Criteo, their direct application in industrial settings is hindered by constraints such as model latency, GPU memory limitations and model reproducibility. In this paper, we share our learnings from improving feature interactions in Pinterest's Homefeed ranking model under such constraints. We provide details about the specific challenges encountered, the strategies employed to address them, and the trade-offs made to balance performance with practical limitations. Additionally, we present a set of learning experiments that help guide the feature interaction architecture selection. We believe these insights will be useful for engineers who are interested in improving their model through better feature interaction learning.
Abstract:Sequential models that encode user activity for next action prediction have become a popular design choice for building web-scale personalized recommendation systems. Traditional methods of sequential recommendation either utilize end-to-end learning on realtime user actions, or learn user representations separately in an offline batch-generated manner. This paper (1) presents Pinterest's ranking architecture for Homefeed, our personalized recommendation product and the largest engagement surface; (2) proposes TransAct, a sequential model that extracts users' short-term preferences from their realtime activities; (3) describes our hybrid approach to ranking, which combines end-to-end sequential modeling via TransAct with batch-generated user embeddings. The hybrid approach allows us to combine the advantages of responsiveness from learning directly on realtime user activity with the cost-effectiveness of batch user representations learned over a longer time period. We describe the results of ablation studies, the challenges we faced during productionization, and the outcome of an online A/B experiment, which validates the effectiveness of our hybrid ranking model. We further demonstrate the effectiveness of TransAct on other surfaces such as contextual recommendations and search. Our model has been deployed to production in Homefeed, Related Pins, Notifications, and Search at Pinterest.