Abstract:Adopting advances in recommendation systems is often challenging in industrial settings due to unique constraints. This paper aims to highlight these constraints through the lens of feature interactions. Feature interactions are critical for accurately predicting user behavior in recommendation systems and online advertising. Despite numerous novel techniques showing superior performance on benchmark datasets like Criteo, their direct application in industrial settings is hindered by constraints such as model latency, GPU memory limitations and model reproducibility. In this paper, we share our learnings from improving feature interactions in Pinterest's Homefeed ranking model under such constraints. We provide details about the specific challenges encountered, the strategies employed to address them, and the trade-offs made to balance performance with practical limitations. Additionally, we present a set of learning experiments that help guide the feature interaction architecture selection. We believe these insights will be useful for engineers who are interested in improving their model through better feature interaction learning.
Abstract:Deep networks achieve state-of-the-art performance on computer vision tasks, yet they fail under adversarial attacks that are imperceptible to humans. In this paper, we propose a novel defense that can dynamically adapt the input using the intrinsic structure from multiple self-supervised tasks. By simultaneously using many self-supervised tasks, our defense avoids over-fitting the adapted image to one specific self-supervised task and restores more intrinsic structure in the image compared to a single self-supervised task approach. Our approach further improves robustness and clean accuracy significantly compared to the state-of-the-art single task self-supervised defense. Our work is the first to connect multiple self-supervised tasks to robustness, and suggests that we can achieve better robustness with more intrinsic signal from visual data.