Abstract:Large-scale generative models are shown to be useful for sampling meaningful candidate solutions, yet they often overlook task constraints and user preferences. Their full power is better harnessed when the models are coupled with external verifiers and the final solutions are derived iteratively or progressively according to the verification feedback. In the context of embodied AI, verification often solely involves assessing whether goal conditions specified in the instructions have been met. Nonetheless, for these agents to be seamlessly integrated into daily life, it is crucial to account for a broader range of constraints and preferences beyond bare task success (e.g., a robot should grasp bread with care to avoid significant deformations). However, given the unbounded scope of robot tasks, it is infeasible to construct scripted verifiers akin to those used for explicit-knowledge tasks like the game of Go and theorem proving. This begs the question: when no sound verifier is available, can we use large vision and language models (VLMs), which are approximately omniscient, as scalable Behavior Critics to catch undesirable robot behaviors in videos? To answer this, we first construct a benchmark that contains diverse cases of goal-reaching yet undesirable robot policies. Then, we comprehensively evaluate VLM critics to gain a deeper understanding of their strengths and failure modes. Based on the evaluation, we provide guidelines on how to effectively utilize VLM critiques and showcase a practical way to integrate the feedback into an iterative process of policy refinement. The dataset and codebase are released at: https://guansuns.github.io/pages/vlm-critic.
Abstract:Generative adversarial networks (GANs) have recently become a popular data augmentation technique used by machine learning practitioners. However, they have been shown to suffer from the so-called mode collapse failure mode, which makes them vulnerable to exacerbating biases on already skewed datasets, resulting in the generated data distribution being less diverse than the training distribution. To this end, we address the problem of quantifying the extent to which mode collapse occurs. This study is a systematic effort focused on the evaluation of state-of-the-art metrics that can potentially quantify biases in GAN-augmented data. We show that, while several such methods are available, there is no single metric that quantifies bias exacerbation reliably over the span of different image domains.