Abstract:As the continuous deepening of low-carbon emission reduction policies, the manufacturing industries urgently need sensible energy-saving scheduling schemes to achieve the balance between improving production efficiency and reducing energy consumption. In energy-saving scheduling, reasonable machine states-switching is a key point to achieve expected goals, i.e., whether the machines need to switch speed between different operations, and whether the machines need to add extra setup time between different jobs. Regarding this matter, this work proposes a novel machine multi states-based energy saving flexible job scheduling problem (EFJSP-M), which simultaneously takes into account machine multi speeds and setup time. To address the proposed EFJSP-M, a kind of discrete differential evolution particle swarm optimization algorithm (D-DEPSO) is designed. In specific, D-DEPSO includes a hybrid initialization strategy to improve the initial population performance, an updating mechanism embedded with differential evolution operators to enhance population diversity, and a critical path variable neighborhood search strategy to expand the solution space. At last, based on datasets DPs and MKs, the experiment results compared with five state-of-the-art algorithms demonstrate the feasible of EFJSP-M and the superior of D-DEPSO.
Abstract:Simultaneous segmentation and detection of liver tumors (hemangioma and hepatocellular carcinoma (HCC)) by using multi-modality non-contrast magnetic resonance imaging (NCMRI) are crucial for the clinical diagnosis. However, it is still a challenging task due to: (1) the HCC information on NCMRI is invisible or insufficient makes extraction of liver tumors feature difficult; (2) diverse imaging characteristics in multi-modality NCMRI causes feature fusion and selection difficult; (3) no specific information between hemangioma and HCC on NCMRI cause liver tumors detection difficult. In this study, we propose a united adversarial learning framework (UAL) for simultaneous liver tumors segmentation and detection using multi-modality NCMRI. The UAL first utilizes a multi-view aware encoder to extract multi-modality NCMRI information for liver tumor segmentation and detection. In this encoder, a novel edge dissimilarity feature pyramid module is designed to facilitate the complementary multi-modality feature extraction. Second, the newly designed fusion and selection channel is used to fuse the multi-modality feature and make the decision of the feature selection. Then, the proposed mechanism of coordinate sharing with padding integrates the multi-task of segmentation and detection so that it enables multi-task to perform united adversarial learning in one discriminator. Lastly, an innovative multi-phase radiomics guided discriminator exploits the clear and specific tumor information to improve the multi-task performance via the adversarial learning strategy. The UAL is validated in corresponding multi-modality NCMRI (i.e. T1FS pre-contrast MRI, T2FS MRI, and DWI) and three phases contrast-enhanced MRI of 255 clinical subjects. The experiments show that UAL has great potential in the clinical diagnosis of liver tumors.
Abstract:Objective: The present study introduces a fractional wavelet scattering network (FrScatNet), which is a generalized translation invariant version of the classical wavelet scattering network (ScatNet). Methods: In our approach, the FrScatNet is constructed based on the fractional wavelet transform (FRWT). The fractional scattering coefficients are iteratively computed using FRWTs and modulus operators. The feature vectors constructed by fractional scattering coefficients are usually used for signal classification. In this work, an application example of FrScatNet is provided in order to assess its performance on pathological images. Firstly, the FrScatNet extracts feature vectors from patches of the original histological images under different orders. Then we classify those patches into target (benign or malignant) and background groups. And the FrScatNet property is analyzed by comparing error rates computed from different fractional orders respectively. Based on the above pathological image classification, a gland segmentation algorithm is proposed by combining the boundary information and the gland location. Results: The error rates for different fractional orders of FrScatNet are examined and show that the classification accuracy is significantly improved in fractional scattering domain. We also compare the FrScatNet based gland segmentation method with those proposed in the 2015 MICCAI Gland Segmentation Challenge and our method achieves comparable results. Conclusion: The FrScatNet is shown to achieve accurate and robust results. More stable and discriminative fractional scattering coefficients are obtained by the FrScatNet in this work. Significance: The added fractional order parameter is able to analyze the image in the fractional scattering domain.