Abstract:Deep learning based methods, especially convolutional neural networks (CNNs) have been successfully applied in the field of single image super-resolution (SISR). To obtain better fidelity and visual quality, most of existing networks are of heavy design with massive computation. However, the computation resources of modern mobile devices are limited, which cannot easily support the expensive cost. To this end, this paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain. In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden. Since pixels or image patches belong to low-frequency areas contain relatively few textural details, this dynamic network will not affect the quality of resulting super-resolution images. In addition, we embed predictors into the proposed dynamic network to end-to-end fine-tune the handcrafted frequency-aware masks. Extensive experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures to obtain the better tradeoff between visual quality and computational complexity. For instance, we can reduce the FLOPs of EDSR model by approximate $50\%$ while preserving state-of-the-art SISR performance.
Abstract:This paper studies the single image super-resolution problem using adder neural networks (AdderNet). Compared with convolutional neural networks, AdderNet utilizing additions to calculate the output features thus avoid massive energy consumptions of conventional multiplications. However, it is very hard to directly inherit the existing success of AdderNet on large-scale image classification to the image super-resolution task due to the different calculation paradigm. Specifically, the adder operation cannot easily learn the identity mapping, which is essential for image processing tasks. In addition, the functionality of high-pass filters cannot be ensured by AdderNet. To this end, we thoroughly analyze the relationship between an adder operation and the identity mapping and insert shortcuts to enhance the performance of SR models using adder networks. Then, we develop a learnable power activation for adjusting the feature distribution and refining details. Experiments conducted on several benchmark models and datasets demonstrate that, our image super-resolution models using AdderNet can achieve comparable performance and visual quality to that of their CNN baselines with an about 2$\times$ reduction on the energy consumption.
Abstract:Although remarkable progress has been made on single image super-resolution due to the revival of deep convolutional neural networks, deep learning methods are confronted with the challenges of computation and memory consumption in practice, especially for mobile devices. Focusing on this issue, we propose an efficient residual dense block search algorithm with multiple objectives to hunt for fast, lightweight and accurate networks for image super-resolution. Firstly, to accelerate super-resolution network, we exploit the variation of feature scale adequately with the proposed efficient residual dense blocks. In the proposed evolutionary algorithm, the locations of pooling and upsampling operator are searched automatically. Secondly, network architecture is evolved with the guidance of block credits to acquire accurate super-resolution network. The block credit reflects the effect of current block and is earned during model evaluation process. It guides the evolution by weighing the sampling probability of mutation to favor admirable blocks. Extensive experimental results demonstrate the effectiveness of the proposed searching method and the found efficient super-resolution models achieve better performance than the state-of-the-art methods with limited number of parameters and FLOPs.