Abstract:With the vigorous development of cloud computing, most organizations have shifted their data and applications to the cloud environment for storage, computation, and sharing purposes. During storage and data sharing across the participating entities, a malicious agent may gain access to outsourced data from the cloud environment. A malicious agent is an entity that deliberately breaches the data. This information accessed might be misused or revealed to unauthorized parties. Therefore, data protection and prediction of malicious agents have become a demanding task that needs to be addressed appropriately. To deal with this crucial and challenging issue, this paper presents a Malicious Agent Identification-based Data Security (MAIDS) Model which utilizes XGBoost machine learning classification algorithm for securing data allocation and communication among different participating entities in the cloud system. The proposed model explores and computes intended multiple security parameters associated with online data communication or transactions. Correspondingly, a security-focused knowledge database is produced for developing the XGBoost Classifier-based Malicious Agent Prediction (XC-MAP) unit. Unlike the existing approaches, which only identify malicious agents after data leaks, MAIDS proactively identifies malicious agents by examining their eligibility for respective data access. In this way, the model provides a comprehensive solution to safeguard crucial data from both intentional and non-intentional breaches, by granting data to authorized agents only by evaluating the agents behavior and predicting the malicious agent before granting data.
Abstract:Electronic Health Records (EHR) are crucial for the success of digital healthcare, with a focus on putting consumers at the center of this transformation. However, the digitalization of healthcare records brings along security and privacy risks for personal data. The major concern is that different countries have varying standards for the security and privacy of medical data. This paper proposed a novel and comprehensive framework to standardize these rules globally, bringing them together on a common platform. To support this proposal, the study reviews existing literature to understand the research interest in this issue. It also examines six key laws and standards related to security and privacy, identifying twenty concepts. The proposed framework utilized K-means clustering to categorize these concepts and identify five key factors. Finally, an Ordinal Priority Approach is applied to determine the preferred implementation of these factors in the context of EHRs. The proposed study provides a descriptive then prescriptive framework for the implementation of privacy and security in the context of electronic health records. Therefore, the findings of the proposed framework are useful for professionals and policymakers in improving the security and privacy associated with EHRs.