Abstract:Robotic search and rescue, exploration, and inspection require trajectory planning across a variety of domains. A popular approach to trajectory planning for these types of missions is ergodic search, which biases a trajectory to spend time in parts of the exploration domain that are believed to contain more information. Most prior work on ergodic search has been limited to searching simple surfaces, like a 2D Euclidean plane or a sphere, as they rely on projecting functions defined on the exploration domain onto analytically obtained Fourier basis functions. In this paper, we extend ergodic search to any surface that can be approximated by a triangle mesh. The basis functions are approximated through finite element methods on a triangle mesh of the domain. We formally prove that this approximation converges to the continuous case as the mesh approximation converges to the true domain. We demonstrate that on domains where analytical basis functions are available (plane, sphere), the proposed method obtains equivalent results, and while on other domains (torus, bunny, wind turbine), the approach is versatile enough to still search effectively. Lastly, we also compare with an existing ergodic search technique that can handle complex domains and show that our method results in a higher quality exploration.
Abstract:Robots with the ability to balance time against the thoroughness of search have the potential to provide time-critical assistance in applications such as search and rescue. Current advances in ergodic coverage-based search methods have enabled robots to completely explore and search an area in a fixed amount of time. However, optimizing time against the quality of autonomous ergodic search has yet to be demonstrated. In this paper, we investigate solutions to the time-optimal ergodic search problem for fast and adaptive robotic search and exploration. We pose the problem as a minimum time problem with an ergodic inequality constraint whose upper bound regulates and balances the granularity of search against time. Solutions to the problem are presented analytically using Pontryagin's conditions of optimality and demonstrated numerically through a direct transcription optimization approach. We show the efficacy of the approach in generating time-optimal ergodic search trajectories in simulation and with drone experiments in a cluttered environment. Obstacle avoidance is shown to be readily integrated into our formulation, and we perform ablation studies that investigate parameter dependence on optimized time and trajectory sensitivity for search.