Abstract:Much of Western classical music uses instruments based on acoustic resonance. Such instruments produce harmonic or quasi-harmonic sounds. On the other hand, since the early 1970s, popular music has largely been produced in the recording studio. As a result, popular music is not bound to be based on harmonic or quasi-harmonic sounds. In this study, we use modified MPEG-7 features to explore and characterise the way in which the use of noise and inharmonicity has evolved in popular music since 1961. We set this evolution in the context of other broad categories of music, including Western classical piano music, Western classical orchestral music, and musique concr\`ete. We propose new features that allow us to distinguish between inharmonicity resulting from noise and inharmonicity resulting from interactions between relatively discrete partials. When the history of contemporary popular music is viewed through the lens of these new features, we find that the period since 1961 can be divided into three phases. From 1961 to 1972, there was a steady increase in inharmonicity but no significant increase in noise. From 1972 to 1986, both inharmonicity and noise increased. Then, since 1986, there has been a steady decrease in both inharmonicity and noise to today's popular music which is significantly less noisy but more inharmonic than the music of the sixties. We relate these observed trends to the development of music production practice over the period and illustrate them with focused analyses of certain key artists and tracks.
Abstract:We present a polynomial-time algorithm that discovers all maximal patterns in a point set, $D\subset\mathbb{R}^k$, that are related by transformations in a user-specified class, $F$, of bijections over $\mathbb{R}^k$. We also present a second algorithm that discovers the set of occurrences for each of these maximal patterns and then uses compact encodings of these occurrence sets to compute a losslessly compressed encoding of the input point set. This encoding takes the form of a set of pairs, $E=\left\lbrace\left\langle P_1, T_1\right\rangle,\left\langle P_2, T_2\right\rangle,\ldots\left\langle P_{\ell}, T_{\ell}\right\rangle\right\rbrace$, where each $\langle P_i,T_i\rangle$ consists of a maximal pattern, $P_i\subseteq D$, and a set, $T_i\subset F$, of transformations that map $P_i$ onto other subsets of $D$. Each transformation is encoded by a vector of real values that uniquely identifies it within $F$ and the length of this vector is used as a measure of the complexity of $F$. We evaluate the new compression algorithm with three transformation classes of differing complexity, on the task of classifying folk-song melodies into tune families. The most complex of the classes tested includes all combinations of the musical transformations of transposition, inversion, retrograde, augmentation and diminution. We found that broadening the transformation class improved performance on this task. However, it did not, on average, improve compression factor, which may be due to the datasets (in this case, folk-song melodies) being too short and simple to benefit from the potentially greater number of pattern relationships that are discoverable with larger transformation classes.
Abstract:Two algorithms, RECURSIA and RRT, are presented, designed to increase the compression factor achieved using SIATEC-based point-set cover algorithms. RECURSIA recursively applies a TEC cover algorithm to the patterns in the TECs that it discovers. RRT attempts to remove translators from each TEC without reducing its covered set. When evaluated with COSIATEC, SIATECCompress and Forth's algorithm on the JKU Patterns Development Database, using RECURSIA with or without RRT increased compression factor and recall but reduced precision. Using RRT alone increased compression factor and reduced recall and precision, but had a smaller effect than RECURSIA.