University of Waterloo
Abstract:This paper introduces ALYSIA: Automated LYrical SongwrIting Application. ALYSIA is based on a machine learning model using Random Forests, and we discuss its success at pitch and rhythm prediction. Next, we show how ALYSIA was used to create original pop songs that were subsequently recorded and produced. Finally, we discuss our vision for the future of Automated Songwriting for both co-creative and autonomous systems.
Abstract:One of the most prominent challenges in clustering is "the user's dilemma," which is the problem of selecting an appropriate clustering algorithm for a specific task. A formal approach for addressing this problem relies on the identification of succinct, user-friendly properties that formally capture when certain clustering methods are preferred over others. Until now these properties focused on advantages of classical Linkage-Based algorithms, failing to identify when other clustering paradigms, such as popular center-based methods, are preferable. We present surprisingly simple new properties that delineate the differences between common clustering paradigms, which clearly and formally demonstrates advantages of center-based approaches for some applications. These properties address how sensitive algorithms are to changes in element frequencies, which we capture in a generalized setting where every element is associated with a real-valued weight.
Abstract:We carefully study how well minimizing convex surrogate loss functions, corresponds to minimizing the misclassification error rate for the problem of binary classification with linear predictors. In particular, we show that amongst all convex surrogate losses, the hinge loss gives essentially the best possible bound, of all convex loss functions, for the misclassification error rate of the resulting linear predictor in terms of the best possible margin error rate. We also provide lower bounds for specific convex surrogates that show how different commonly used losses qualitatively differ from each other.