Abstract:We consider how human-centered causal theories and tools from the dynamical systems literature can be deployed to guide the representation of data when training neural networks for complex classification tasks. Specifically, we use simulated data to show that training a neural network with a data representation that makes explicit the invariant structural causal features of the data generating process of an epidemic system improves out-of-distribution (OOD) generalization performance on a classification task as compared to a more naive approach to data representation. We take these results to demonstrate that using human-generated causal knowledge to reduce the epistemic uncertainty of ML developers can lead to more well-specified ML pipelines. This, in turn, points to the utility of a dynamical systems approach to the broader effort aimed at improving the robustness and safety of machine learning systems via improved ML system development practices.
Abstract:Discovering high-level causal relations from low-level data is an important and challenging problem that comes up frequently in the natural and social sciences. In a series of papers, Chalupka et al. (2015, 2016a, 2016b, 2017) develop a procedure for causal feature learning (CFL) in an effort to automate this task. We argue that CFL does not recommend coarsening in cases where pragmatic considerations rule in favor of it, and recommends coarsening in cases where pragmatic considerations rule against it. We propose a new technique, pragmatic causal feature learning (PCFL), which extends the original CFL algorithm in useful and intuitive ways. We show that PCFL has the same attractive measure-theoretic properties as the original CFL algorithm. We compare the performance of both methods through theoretical analysis and experiments.