Abstract:Three-dimensional (3D) biomedical image sets are often acquired with in-plane pixel spacings that are far less than the out-of-plane spacings between images. The resultant anisotropy, which can be detrimental in many applications, can be decreased using image interpolation. Optical flow and/or other registration-based interpolators have proven useful in such interpolation roles in the past. When acquired images are comprised of signals that describe the flow velocity of fluids, additional information is available to guide the interpolation process. In this paper, we present an optical-flow based framework for image interpolation that also minimizes resultant divergence in the interpolated data.
Abstract:In this paper, we propose sparse coding-based approaches for segmentation of tumor regions from MR images. Sparse coding with data-adapted dictionaries has been successfully employed in several image recovery and vision problems. The proposed approaches obtain sparse codes for each pixel in brain magnetic resonance images considering their intensity values and location information. Since it is trivial to obtain pixel-wise sparse codes, and combining multiple features in the sparse coding setup is not straightforward, we propose to perform sparse coding in a high-dimensional feature space where non-linear similarities can be effectively modeled. We use the training data from expert-segmented images to obtain kernel dictionaries with the kernel K-lines clustering procedure. For a test image, sparse codes are computed with these kernel dictionaries, and they are used to identify the tumor regions. This approach is completely automated, and does not require user intervention to initialize the tumor regions in a test image. Furthermore, a low complexity segmentation approach based on kernel sparse codes, which allows the user to initialize the tumor region, is also presented. Results obtained with both the proposed approaches are validated against manual segmentation by an expert radiologist, and the proposed methods lead to accurate tumor identification.