Abstract:While recent two-stage many-to-one deep learning models have demonstrated great success in 3D human pose estimation, such models are inefficient ways to detect 3D key points in a sequential video relative to one-shot and many-to-many models. Another key drawback of two-stage and many-to-one models is that errors in the first stage will be passed onto the second stage. In this paper, we introduce SoloPose, a novel one-shot, many-to-many spatio-temporal transformer model for kinematic 3D human pose estimation of video. SoloPose is further fortified by HeatPose, a 3D heatmap based on Gaussian Mixture Model distributions that factors target key points as well as kinematically adjacent key points. Finally, we address data diversity constraints with the 3D AugMotion Toolkit, a methodology to augment existing 3D human pose datasets, specifically by projecting four top public 3D human pose datasets (Humans3.6M, MADS, AIST Dance++, MPI INF 3DHP) into a novel dataset (Humans7.1M) with a universal coordinate system. Extensive experiments are conducted on Human3.6M as well as the augmented Humans7.1M dataset, and SoloPose demonstrates superior results relative to the state-of-the-art approaches.
Abstract:Emotion detection presents challenges to intelligent human-robot interaction (HRI). Foundational deep learning techniques used in emotion detection are limited by information-constrained datasets or models that lack the necessary complexity to learn interactions between input data elements, such as the the variance of human emotions across different contexts. In the current effort, we introduce 1) MoEmo (Motion to Emotion), a cross-attention vision transformer (ViT) for human emotion detection within robotics systems based on 3D human pose estimations across various contexts, and 2) a data set that offers full-body videos of human movement and corresponding emotion labels based on human gestures and environmental contexts. Compared to existing approaches, our method effectively leverages the subtle connections between movement vectors of gestures and environmental contexts through the use of cross-attention on the extracted movement vectors of full-body human gestures/poses and feature maps of environmental contexts. We implement a cross-attention fusion model to combine movement vectors and environment contexts into a joint representation to derive emotion estimation. Leveraging our Naturalistic Motion Database, we train the MoEmo system to jointly analyze motion and context, yielding emotion detection that outperforms the current state-of-the-art.