Abstract:With the rising necessity of explainable artificial intelligence (XAI), we see an increase in task-dependent XAI methods on varying abstraction levels. XAI techniques on a global level explain model behavior and on a local level explain sample predictions. We propose a visual analytics workflow to support seamless transitions between global and local explanations, focusing on attributions and counterfactuals on time series classification. In particular, we adapt local XAI techniques (attributions) that are developed for traditional datasets (images, text) to analyze time series classification, a data type that is typically less intelligible to humans. To generate a global overview, we apply local attribution methods to the data, creating explanations for the whole dataset. These explanations are projected onto two dimensions, depicting model behavior trends, strategies, and decision boundaries. To further inspect the model decision-making as well as potential data errors, a what-if analysis facilitates hypothesis generation and verification on both the global and local levels. We constantly collected and incorporated expert user feedback, as well as insights based on their domain knowledge, resulting in a tailored analysis workflow and system that tightly integrates time series transformations into explanations. Lastly, we present three use cases, verifying that our technique enables users to (1)~explore data transformations and feature relevance, (2)~identify model behavior and decision boundaries, as well as, (3)~the reason for misclassifications.
Abstract:Decision explanations of machine learning black-box models are often generated by applying Explainable AI (XAI) techniques. However, many proposed XAI methods produce unverified outputs. Evaluation and verification are usually achieved with a visual interpretation by humans on individual images or text. In this preregistration, we propose an empirical study and benchmark framework to apply attribution methods for neural networks developed for images and text data on time series. We present a methodology to automatically evaluate and rank attribution techniques on time series using perturbation methods to identify reliable approaches.
Abstract:Explainable Artificial Intelligence (XAI) methods are typically deployed to explain and debug black-box machine learning models. However, most proposed XAI methods are black-boxes themselves and designed for images. Thus, they rely on visual interpretability to evaluate and prove explanations. In this work, we apply XAI methods previously used in the image and text-domain on time series. We present a methodology to test and evaluate various XAI methods on time series by introducing new verification techniques to incorporate the temporal dimension. We further conduct preliminary experiments to assess the quality of selected XAI method explanations with various verification methods on a range of datasets and inspecting quality metrics on it. We demonstrate that in our initial experiments, SHAP works robust for all models, but others like DeepLIFT, LRP, and Saliency Maps work better with specific architectures.
Abstract:Bias is known to be an impediment to fair decisions in many domains such as human resources, the public sector, health care etc. Recently, hope has been expressed that the use of machine learning methods for taking such decisions would diminish or even resolve the problem. At the same time, machine learning experts warn that machine learning models can be biased as well. In this article, our goal is to explain the issue of bias in machine learning from a technical perspective and to illustrate the impact that biased data can have on a machine learning model. To reach such a goal, we develop interactive plots to visualizing the bias learned from synthetic data.