Abstract:This paper describes a data-driven framework to parse musical sequences into dependency trees, which are hierarchical structures used in music cognition research and music analysis. The parsing involves two steps. First, the input sequence is passed through a transformer encoder to enrich it with contextual information. Then, a classifier filters the graph of all possible dependency arcs to produce the dependency tree. One major benefit of this system is that it can be easily integrated into modern deep-learning pipelines. Moreover, since it does not rely on any particular symbolic grammar, it can consider multiple musical features simultaneously, make use of sequential context information, and produce partial results for noisy inputs. We test our approach on two datasets of musical trees -- time-span trees of monophonic note sequences and harmonic trees of jazz chord sequences -- and show that our approach outperforms previous methods.
Abstract:This technical report presents a general framework for parsing a variety of grammar formalisms. We develop a grammar formalism, called an Abstract Grammar, which is general enough to represent grammars at many levels of the hierarchy, including Context Free Grammars, Minimalist Grammars, and Generalized Context-free Grammars. We then develop a single parsing framework which is capable of parsing grammars which are at least up to GCFGs on the hierarchy. Our parsing framework exposes a grammar interface, so that it can parse any particular grammar formalism that can be reduced to an Abstract Grammar.
Abstract:The following technical report presents a formal approach to probabilistic minimalist grammar induction. We describe a formalization of a minimalist grammar. Based on this grammar, we define a generative model for minimalist derivations. We then present a generalized algorithm for the application of variational Bayesian inference to lexicalized mildly context sensitive language grammars which in this paper is applied to the previously defined minimalist grammar.