Abstract:The rise of generative chat-based Large Language Models (LLMs) over the past two years has spurred a race to develop systems that promise near-human conversational and reasoning experiences. However, recent studies indicate that the language understanding offered by these models remains limited and far from human-like performance, particularly in grasping the contextual meanings of words, an essential aspect of reasoning. In this paper, we present a simple yet computationally efficient framework for multilingual Word Sense Disambiguation (WSD). Our approach reframes the WSD task as a cluster discrimination analysis over a semantic network refined from BabelNet using group algebra. We validate our methodology across multiple WSD benchmarks, achieving a new state of the art for all languages and tasks, as well as in individual assessments by part of speech. Notably, our model significantly surpasses the performance of current alternatives, even in low-resource languages, while reducing the parameter count by 72%.
Abstract:Off-policy evaluation can leverage logged data to estimate the effectiveness of new policies in e-commerce, search engines, media streaming services, or automatic diagnostic tools in healthcare. However, the performance of baseline off-policy estimators like IPS deteriorates when the logging policy significantly differs from the evaluation policy. Recent work proposes sharing information across similar actions to mitigate this problem. In this work, we propose an alternative estimator that shares information across similar contexts using clustering. We study the theoretical properties of the proposed estimator, characterizing its bias and variance under different conditions. We also compare the performance of the proposed estimator and existing approaches in various synthetic problems, as well as a real-world recommendation dataset. Our experimental results confirm that clustering contexts improves estimation accuracy, especially in deficient information settings.