University of the Witwatersrand, Johannesburg, South Africa
Abstract:We consider the problem of unsupervised skill segmentation and hierarchical structure discovery in reinforcement learning. While recent approaches have sought to segment trajectories into reusable skills or options, most rely on action labels, rewards, or handcrafted annotations, limiting their applicability. We propose a method that segments unlabelled trajectories into skills and induces a hierarchical structure over them using a grammar-based approach. The resulting hierarchy captures both low-level behaviours and their composition into higher-level skills. We evaluate our approach in high-dimensional, pixel-based environments, including Craftax and the full, unmodified version of Minecraft. Using metrics for skill segmentation, reuse, and hierarchy quality, we find that our method consistently produces more structured and semantically meaningful hierarchies than existing baselines. Furthermore, as a proof of concept for utility, we demonstrate that these discovered hierarchies accelerate and stabilise learning on downstream reinforcement learning tasks.
Abstract:We propose a new benchmark for planning tasks based on the Minecraft game. Our benchmark contains 45 tasks overall, but also provides support for creating both propositional and numeric instances of new Minecraft tasks automatically. We benchmark numeric and propositional planning systems on these tasks, with results demonstrating that state-of-the-art planners are currently incapable of dealing with many of the challenges advanced by our new benchmark, such as scaling to instances with thousands of objects. Based on these results, we identify areas of improvement for future planners. Our framework is made available at https://github.com/IretonLiu/mine-pddl/.