Abstract:The progression of deep learning and the widespread adoption of sensors have facilitated automatic multi-view fusion (MVF) about the cardiovascular system (CVS) signals. However, prevalent MVF model architecture often amalgamates CVS signals from the same temporal step but different views into a unified representation, disregarding the asynchronous nature of cardiovascular events and the inherent heterogeneity across views, leading to catastrophic view confusion. Efficient training strategies specifically tailored for MVF models to attain comprehensive representations need simultaneous consideration. Crucially, real-world data frequently arrives with incomplete views, an aspect rarely noticed by researchers. Thus, the View-Centric Transformer (VCT) and Multitask Masked Autoencoder (M2AE) are specifically designed to emphasize the centrality of each view and harness unlabeled data to achieve superior fused representations. Additionally, we systematically define the missing-view problem for the first time and introduce prompt techniques to aid pretrained MVF models in flexibly adapting to various missing-view scenarios. Rigorous experiments involving atrial fibrillation detection, blood pressure estimation, and sleep staging-typical health monitoring tasks-demonstrate the remarkable advantage of our method in MVF compared to prevailing methodologies. Notably, the prompt technique requires finetuning less than 3% of the entire model's data, substantially fortifying the model's resilience to view missing while circumventing the need for complete retraining. The results demonstrate the effectiveness of our approaches, highlighting their potential for practical applications in cardiovascular health monitoring. Codes and models are released at URL.
Abstract:Considering the variability of amplitude and phase patterns in electrocardiogram (ECG) signals due to cardiac activity and individual differences, existing entropy-based studies have not fully utilized these two patterns and lack integration. To address this gap, this paper proposes a novel fusion entropy metric, morphological ECG entropy (MEE) for the first time, specifically designed for ECG morphology, to comprehensively describe the fusion of amplitude and phase patterns. MEE is computed based on beat-level samples, enabling detailed analysis of each cardiac cycle. Experimental results demonstrate that MEE achieves rapid, accurate, and label-free localization of abnormal ECG arrhythmia regions. Furthermore, MEE provides a method for assessing sample diversity, facilitating compression of imbalanced training sets (via representative sample selection), and outperforms random pruning. Additionally, MEE exhibits the ability to describe areas of poor quality. By discussing, it proves the robustness of MEE value calculation to noise interference and its low computational complexity. Finally, we integrate this method into a clinical interactive interface to provide a more convenient and intuitive user experience. These findings indicate that MEE serves as a valuable clinical descriptor for ECG characterization. The implementation code can be referenced at the following link: https://github.com/fdu-harry/ECG-MEE-metric.