Abstract:Considering the variability of amplitude and phase patterns in electrocardiogram (ECG) signals due to cardiac activity and individual differences, existing entropy-based studies have not fully utilized these two patterns and lack integration. To address this gap, this paper proposes a novel fusion entropy metric, morphological ECG entropy (MEE) for the first time, specifically designed for ECG morphology, to comprehensively describe the fusion of amplitude and phase patterns. MEE is computed based on beat-level samples, enabling detailed analysis of each cardiac cycle. Experimental results demonstrate that MEE achieves rapid, accurate, and label-free localization of abnormal ECG arrhythmia regions. Furthermore, MEE provides a method for assessing sample diversity, facilitating compression of imbalanced training sets (via representative sample selection), and outperforms random pruning. Additionally, MEE exhibits the ability to describe areas of poor quality. By discussing, it proves the robustness of MEE value calculation to noise interference and its low computational complexity. Finally, we integrate this method into a clinical interactive interface to provide a more convenient and intuitive user experience. These findings indicate that MEE serves as a valuable clinical descriptor for ECG characterization. The implementation code can be referenced at the following link: https://github.com/fdu-harry/ECG-MEE-metric.
Abstract:Electrocardiogram (ECG), a technique for medical monitoring of cardiac activity, is an important method for identifying cardiovascular disease. However, analyzing the increasing quantity of ECG data consumes a lot of medical resources. This paper explores an effective algorithm for automatic classifications of multi-classes of heartbeat types based on ECG. Most neural network based methods target the individual heartbeats, ignoring the secrets embedded in the temporal sequence. And the ECG signal has temporal variation and unique individual characteristics, which means that the same type of ECG signal varies among patients under different physical conditions. A two-stream architecture is used in this paper and presents an enhanced version of ECG recognition based on this. The architecture achieves classification of holistic ECG signal and individual heartbeat and incorporates identified and temporal stream networks. Identified networks are used to extract features of individual heartbeats, while temporal networks aim to extract temporal correlations between heartbeats. Results on the MIT-BIH Arrhythmia Database demonstrate that the proposed algorithm performs an accuracy of 99.38\%. In addition, the proposed algorithm reaches an 88.07\% positive accuracy on massive data in real life, showing that the proposed algorithm can efficiently categorize different classes of heartbeat with high diagnostic performance.