Abstract:Artificial intelligence experienced a technological breakthrough in science, industry, and everyday life in the recent few decades. The advancements can be credited to the ever-increasing availability and miniaturization of computational resources that resulted in exponential data growth. However, because of the insufficient amount of data in some cases, employing machine learning in solving complex tasks is not straightforward or even possible. As a result, machine learning with small data experiences rising importance in data science and application in several fields. The authors focus on interpreting the general term of "small data" and their engineering and industrial application role. They give a brief overview of the most important industrial applications of machine learning and small data. Small data is defined in terms of various characteristics compared to big data, and a machine learning formalism was introduced. Five critical challenges of machine learning with small data in industrial applications are presented: unlabeled data, imbalanced data, missing data, insufficient data, and rare events. Based on those definitions, an overview of the considerations in domain representation and data acquisition is given along with a taxonomy of machine learning approaches in the context of small data.
Abstract:Background / introduction. Vector symbolic architectures (VSA) are a viable approach for the hyperdimensional representation of symbolic data, such as documents, syntactic structures, or semantic frames. Methods. We present a rigorous mathematical framework for the representation of phrase structure trees and parse-trees of context-free grammars (CFG) in Fock space, i.e. infinite-dimensional Hilbert space as being used in quantum field theory. We define a novel normal form for CFG by means of term algebras. Using a recently developed software toolbox, called FockBox, we construct Fock space representations for the trees built up by a CFG left-corner (LC) parser. Results. We prove a universal representation theorem for CFG term algebras in Fock space and illustrate our findings through a low-dimensional principal component projection of the LC parser states. Conclusions. Our approach could leverage the development of VSA for explainable artificial intelligence (XAI) by means of hyperdimensional deep neural computation. It could be of significance for the improvement of cognitive user interfaces and other applications of VSA in machine learning.