Abstract:This paper investigates regret minimization, statistical inference, and their interplay in high-dimensional online decision-making based on the sparse linear context bandit model. We integrate the $\varepsilon$-greedy bandit algorithm for decision-making with a hard thresholding algorithm for estimating sparse bandit parameters and introduce an inference framework based on a debiasing method using inverse propensity weighting. Under a margin condition, our method achieves either $O(T^{1/2})$ regret or classical $O(T^{1/2})$-consistent inference, indicating an unavoidable trade-off between exploration and exploitation. If a diverse covariate condition holds, we demonstrate that a pure-greedy bandit algorithm, i.e., exploration-free, combined with a debiased estimator based on average weighting can simultaneously achieve optimal $O(\log T)$ regret and $O(T^{1/2})$-consistent inference. We also show that a simple sample mean estimator can provide valid inference for the optimal policy's value. Numerical simulations and experiments on Warfarin dosing data validate the effectiveness of our methods.
Abstract:Making online decisions can be challenging when features are sparse and orthogonal to historical ones, especially when the optimal policy is learned through collaborative filtering. We formulate the problem as a matrix completion bandit (MCB), where the expected reward under each arm is characterized by an unknown low-rank matrix. The $\epsilon$-greedy bandit and the online gradient descent algorithm are explored. Policy learning and regret performance are studied under a specific schedule for exploration probabilities and step sizes. A faster decaying exploration probability yields smaller regret but learns the optimal policy less accurately. We investigate an online debiasing method based on inverse propensity weighting (IPW) and a general framework for online policy inference. The IPW-based estimators are asymptotically normal under mild arm-optimality conditions. Numerical simulations corroborate our theoretical findings. Our methods are applied to the San Francisco parking pricing project data, revealing intriguing discoveries and outperforming the benchmark policy.