Abstract:Large vision-language models (VLMs) like GPT-4V represent an unprecedented revolution in the field of artificial intelligence (AI). Compared to single-modal large language models (LLMs), VLMs possess more versatile capabilities by incorporating additional modalities (e.g., images). Meanwhile, there's a rising enthusiasm in the AI community to develop open-source VLMs, such as LLaVA and MiniGPT4, which, however, have not undergone rigorous safety assessment. In this paper, to demonstrate that more modalities lead to unforeseen AI safety issues, we propose FigStep, a novel jailbreaking framework against VLMs. FigStep feeds harmful instructions into VLMs through the image channel and then uses benign text prompts to induce VLMs to output contents that violate common AI safety policies. Our experimental results show that FigStep can achieve an average attack success rate of 94.8% across 2 families of popular open-source VLMs, LLaVA and MiniGPT4 (a total of 5 VLMs). Moreover, we demonstrate that the methodology of FigStep can even jailbreak GPT-4V, which already leverages several system-level mechanisms to filter harmful queries. Above all, our experimental results reveal that VLMs are vulnerable to jailbreaking attacks, which highlights the necessity of novel safety alignments between visual and textual modalities.