Abstract:Voice digital assistants must keep up with trending search queries. We rely on a speech recognition model using contextual biasing with a rapidly updated set of entities, instead of frequent model retraining, to keep up with trends. There are several challenges with this approach: (1) the entity set must be frequently reconstructed, (2) the entity set is of limited size due to latency and accuracy trade-offs, and (3) finding the true entity distribution for biasing is complicated by ASR misrecognition. We address these challenges and define an entity set by modeling customers true requested entity distribution from ASR output in production using record deduplication, a technique from the field of entity resolution. Record deduplication resolves or deduplicates coreferences, including misrecognitions, of the same latent entity. Our method successfully retrieves 95% of misrecognized entities and when used for contextual biasing shows an estimated 5% relative word error rate reduction.
Abstract:Conversational Intelligence requires that a person engage on informational, personal and relational levels. Advances in Natural Language Understanding have helped recent chatbots succeed at dialog on the informational level. However, current techniques still lag for conversing with humans on a personal level and fully relating to them. The University of Michigan's submission to the Alexa Prize Grand Challenge 3, Audrey, is an open-domain conversational chat-bot that aims to engage customers on these levels through interest driven conversations guided by customers' personalities and emotions. Audrey is built from socially-aware models such as Emotion Detection and a Personal Understanding Module to grasp a deeper understanding of users' interests and desires. Our architecture interacts with customers using a hybrid approach balanced between knowledge-driven response generators and context-driven neural response generators to cater to all three levels of conversations. During the semi-finals period, we achieved an average cumulative rating of 3.25 on a 1-5 Likert scale.