Abstract:Video super-resolution (VSR) is a critical task for enhancing low-bitrate and low-resolution videos, particularly in streaming applications. While numerous solutions have been developed, they often suffer from high computational demands, resulting in low frame rates (FPS) and poor power efficiency, especially on mobile platforms. In this work, we compile different methods to address these challenges, the solutions are end-to-end real-time video super-resolution frameworks optimized for both high performance and low runtime. We also introduce a new test set of high-quality 4K videos to further validate the approaches. The proposed solutions tackle video up-scaling for two applications: 540p to 4K (x4) as a general case, and 360p to 1080p (x3) more tailored towards mobile devices. In both tracks, the solutions have a reduced number of parameters and operations (MACs), allow high FPS, and improve VMAF and PSNR over interpolation baselines. This report gauges some of the most efficient video super-resolution methods to date.
Abstract:VMAF is a machine learning based video quality assessment method, originally designed for streaming applications, which combines multiple quality metrics and video features through SVM regression. It offers higher correlation with subjective opinions compared to many conventional quality assessment methods. In this paper we propose enhancements to VMAF through the integration of new video features and alternative quality metrics (selected from a diverse pool) alongside multiple model combination. The proposed combination approach enables training on multiple databases with varying content and distortion characteristics. Our enhanced VMAF method has been evaluated on eight HD video databases, and consistently outperforms the original VMAF model (0.6.1) and other benchmark quality metrics, exhibiting higher correlation with subjective ground truth data.