Abstract:In this paper, we present a new approach to bridge the domain gap between synthetic and real-world data for un- manned aerial vehicle (UAV)-based perception. Our formu- lation is designed for dynamic scenes, consisting of moving objects or human actions, where the goal is to recognize the pose or actions. We propose an extension of K-Planes Neural Radiance Field (NeRF), wherein our algorithm stores a set of tiered feature vectors. The tiered feature vectors are generated to effectively model conceptual information about a scene as well as an image decoder that transforms output feature maps into RGB images. Our technique leverages the information amongst both static and dynamic objects within a scene and is able to capture salient scene attributes of high altitude videos. We evaluate its performance on challenging datasets, including Okutama Action and UG2, and observe considerable improvement in accuracy over state of the art aerial perception algorithms.
Abstract:Tremendous variations coupled with large degrees of freedom in UAV-based imaging conditions lead to a significant lack of data in adequately learning UAV-based perception models. Using various synthetic renderers in conjunction with perception models is prevalent to create synthetic data to augment the learning in the ground-based imaging domain. However, severe challenges in the austere UAV-based domain require distinctive solutions to image synthesis for data augmentation. In this work, we leverage recent advancements in neural rendering to improve static and dynamic novelview UAV-based image synthesis, especially from high altitudes, capturing salient scene attributes. Finally, we demonstrate a considerable performance boost is achieved when a state-ofthe-art detection model is optimized primarily on hybrid sets of real and synthetic data instead of the real or synthetic data separately.