Abstract:Advances in large language models (LLMs) have encouraged their adoption in the healthcare domain where vital clinical information is often contained in unstructured notes. Cancer staging status is available in clinical reports, but it requires natural language processing to extract the status from the unstructured text. With the advance in clinical-oriented LLMs, it is promising to extract such status without extensive efforts in training the algorithms. Prompting approaches of the pre-trained LLMs that elicit a model's reasoning process, such as chain-of-thought, may help to improve the trustworthiness of the generated responses. Using self-consistency further improves model performance, but often results in inconsistent generations across the multiple reasoning paths. In this study, we propose an ensemble reasoning approach with the aim of improving the consistency of the model generations. Using an open access clinical large language model to determine the pathologic cancer stage from real-world pathology reports, we show that the ensemble reasoning approach is able to improve both the consistency and performance of the LLM in determining cancer stage, thereby demonstrating the potential to use these models in clinical or other domains where reliability and trustworthiness are critical.
Abstract:Artificial intelligence supports healthcare professionals with predictive modeling, greatly transforming clinical decision-making. This study addresses the crucial need for fairness and explainability in AI applications within healthcare to ensure equitable outcomes across diverse patient demographics. By focusing on the predictive modeling of sepsis-related mortality, we propose a method that learns a performance-optimized predictive model and then employs the transfer learning process to produce a model with better fairness. Our method also introduces a novel permutation-based feature importance algorithm aiming at elucidating the contribution of each feature in enhancing fairness on predictions. Unlike existing explainability methods concentrating on explaining feature contribution to predictive performance, our proposed method uniquely bridges the gap in understanding how each feature contributes to fairness. This advancement is pivotal, given sepsis's significant mortality rate and its role in one-third of hospital deaths. Our method not only aids in identifying and mitigating biases within the predictive model but also fosters trust among healthcare stakeholders by improving the transparency and fairness of model predictions, thereby contributing to more equitable and trustworthy healthcare delivery.
Abstract:Fairness of machine learning models in healthcare has drawn increasing attention from clinicians, researchers, and even at the highest level of government. On the other hand, the importance of developing and deploying interpretable or explainable models has been demonstrated, and is essential to increasing the trustworthiness and likelihood of adoption of these models. The objective of this study was to develop and implement a framework for addressing both these issues - fairness and explainability. We propose an explainable fairness framework, first developing a model with optimized performance, and then using an in-processing approach to mitigate model biases relative to the sensitive attributes of race and sex. We then explore and visualize explanations of the model changes that lead to the fairness enhancement process through exploring the changes in importance of features. Our resulting-fairness enhanced models retain high sensitivity with improved fairness and explanations of the fairness-enhancement that may provide helpful insights for healthcare providers to guide clinical decision-making and resource allocation.
Abstract:Cancer stage classification is important for making treatment and care management plans for oncology patients. Information on staging is often included in unstructured form in clinical, pathology, radiology and other free-text reports in the electronic health record system, requiring extensive work to parse and obtain. To facilitate the extraction of this information, previous NLP approaches rely on labeled training datasets, which are labor-intensive to prepare. In this study, we demonstrate that without any labeled training data, open-source clinical large language models (LLMs) can extract pathologic tumor-node-metastasis (pTNM) staging information from real-world pathology reports. Our experiments compare LLMs and a BERT-based model fine-tuned using the labeled data. Our findings suggest that while LLMs still exhibit subpar performance in Tumor (T) classification, with the appropriate adoption of prompting strategies, they can achieve comparable performance on Metastasis (M) classification and improved performance on Node (N) classification.
Abstract:The online health community (OHC) is the primary channel for laypeople to share health information. To analyze the health consumer-generated content (HCGC) from the OHCs, identifying the colloquial medical expressions used by laypeople is a critical challenge. The open-access and collaborative consumer health vocabulary (OAC CHV) is the controlled vocabulary for addressing such a challenge. Nevertheless, OAC CHV is only available in English, limiting the applicability to other languages. This research aims to propose a cross-lingual automatic term recognition framework for extending the English OAC CHV into a cross-lingual one. Our framework requires an English HCGC corpus and a non-English (i.e., Chinese in this study) HCGC corpus as inputs. Two monolingual word vector spaces are determined using skip-gram algorithm so that each space encodes common word associations from laypeople within a language. Based on isometry assumption, the framework align two monolingual spaces into a bilingual word vector space, where we employ cosine similarity as a metric for identifying semantically similar words across languages. In the experiments, our framework demonstrates that it can effectively retrieve similar medical terms, including colloquial expressions, across languages and further facilitate compilation of cross-lingual CHV.
Abstract:Networks are used as highly expressive tools in different disciplines. In recent years, the analysis and mining of temporal networks have attracted substantial attention. Frequent pattern mining is considered an essential task in the network science literature. In addition to the numerous applications, the investigation of frequent pattern mining in networks directly impacts other analytical approaches, such as clustering, quasi-clique and clique mining, and link prediction. In nearly all the algorithms proposed for frequent pattern mining in temporal networks, the networks are represented as sequences of static networks. Then, the inter- or intra-network patterns are mined. This type of representation imposes a computation-expressiveness trade-off to the mining problem. In this paper, we propose a novel representation that can preserve the temporal aspects of the network losslessly. Then, we introduce the concept of constrained interval graphs (CIGs). Next, we develop a series of algorithms for mining the complete set of frequent temporal patterns in a temporal network data set. We also consider four different definitions of isomorphism to allow noise tolerance in temporal data collection. Implementing the algorithm for three real-world data sets proves the practicality of the proposed algorithm and its capability to discover unknown patterns in various settings.