Abstract:We present an efficient end-to-end pipeline for largescale landmark recognition and retrieval. We show how to combine and enhance concepts from recent research in image retrieval and introduce two architectures especially suited for large-scale landmark identification. A model with deep orthogonal fusion of local and global features (DOLG) using an EfficientNet backbone as well as a novel Hybrid-Swin-Transformer is discussed and details how to train both architectures efficiently using a step-wise approach and a sub-center arcface loss with dynamic margins are provided. Furthermore, we elaborate a novel discriminative re-ranking methodology for image retrieval. The superiority of our approach was demonstrated by winning the recognition and retrieval track of the Google Landmark Competition 2021.
Abstract:We present a robust classification approach for avian vocalization in complex and diverse soundscapes, achieving second place in the BirdCLEF2021 challenge. We illustrate how to make full use of pre-trained convolutional neural networks, by using an efficient modeling and training routine supplemented by novel augmentation methods. Thereby, we improve the generalization of weakly labeled crowd-sourced data to productive data collected by autonomous recording units. As such, we illustrate how to progress towards an accurate automated assessment of avian population which would enable global biodiversity monitoring at scale, impossible by manual annotation.
Abstract:This article presents an efficient end-to-end method to perform instance-level recognition employed to the task of labeling and ranking landmark images. In a first step, we embed images in a high dimensional feature space using convolutional neural networks trained with an additive angular margin loss and classify images using visual similarity. We then efficiently re-rank predictions and filter noise utilizing similarity to out-of-domain images. Using this approach we achieved the 1st place in the 2020 edition of the Google Landmark Recognition challenge.