Abstract:In this work, we focus on outdoor lighting estimation by aggregating individual noisy estimates from images, exploiting the rich image information from wide-angle cameras and/or temporal image sequences. Photographs inherently encode information about the scene's lighting in the form of shading and shadows. Recovering the lighting is an inverse rendering problem and as that ill-posed. Recent work based on deep neural networks has shown promising results for single image lighting estimation, but suffers from robustness. We tackle this problem by combining lighting estimates from several image views sampled in the angular and temporal domain of an image sequence. For this task, we introduce a transformer architecture that is trained in an end-2-end fashion without any statistical post-processing as required by previous work. Thereby, we propose a positional encoding that takes into account the camera calibration and ego-motion estimation to globally register the individual estimates when computing attention between visual words. We show that our method leads to improved lighting estimation while requiring less hyper-parameters compared to the state-of-the-art.
Abstract:3D reconstruction of depth and motion from monocular video in dynamic environments is a highly ill-posed problem due to scale ambiguities when projecting to the 2D image domain. In this work, we investigate the performance of the current State-of-the-Art (SotA) deep multi-view systems in such environments. We find that current supervised methods work surprisingly well despite not modelling individual object motions, but make systematic errors due to a lack of dense ground truth data. To detect such errors during usage, we extend the cost volume based Deep Video to Depth (DeepV2D) framework \cite{teed2018deepv2d} with a learned uncertainty. Our Deep Video to certain Depth (DeepV2cD) model allows i) to perform en par or better with current SotA and ii) achieve a better uncertainty measure than the naive Shannon entropy. Our experiments show that a simple filter strategy based on the uncertainty can significantly reduce systematic errors. This results in cleaner reconstructions both on static and dynamic parts of the scene.