Abstract:We explore the task of embodied view synthesis from monocular videos of deformable scenes. Given a minute-long RGBD video of people interacting with their pets, we render the scene from novel camera trajectories derived from in-scene motion of actors: (1) egocentric cameras that simulate the point of view of a target actor and (2) 3rd-person cameras that follow the actor. Building such a system requires reconstructing the root-body and articulated motion of each actor in the scene, as well as a scene representation that supports free-viewpoint synthesis. Longer videos are more likely to capture the scene from diverse viewpoints (which helps reconstruction) but are also more likely to contain larger motions (which complicates reconstruction). To address these challenges, we present Total-Recon, the first method to photorealistically reconstruct deformable scenes from long monocular RGBD videos. Crucially, to scale to long videos, our method hierarchically decomposes the scene motion into the motion of each object, which itself is decomposed into global root-body motion and local articulations. To quantify such "in-the-wild" reconstruction and view synthesis, we collect ground-truth data from a specialized stereo RGBD capture rig for 11 challenging videos, significantly outperforming prior art. Code, videos, and data can be found at https://andrewsonga.github.io/totalrecon .
Abstract:Integrating model-based machine learning methods into deep neural architectures allows one to leverage both the expressive power of deep neural nets and the ability of model-based methods to incorporate domain-specific knowledge. In particular, many works have employed the expectation maximization (EM) algorithm in the form of an unrolled layer-wise structure that is jointly trained with a backbone neural network. However, it is difficult to discriminatively train the backbone network by backpropagating through the EM iterations as they are prone to the vanishing gradient problem. To address this issue, we propose Highway Expectation Maximization Networks (HEMNet), which is comprised of unrolled iterations of the generalized EM (GEM) algorithm based on the Newton-Rahpson method. HEMNet features scaled skip connections, or highways, along the depths of the unrolled architecture, resulting in improved gradient flow during backpropagation while incurring negligible additional computation and memory costs compared to standard unrolled EM. Furthermore, HEMNet preserves the underlying EM procedure, thereby fully retaining the convergence properties of the original EM algorithm. We achieve significant improvement in performance on several semantic segmentation benchmarks and empirically show that HEMNet effectively alleviates gradient decay.