Abstract:Explainable Recommendation task is designed to receive a pair of user and item and output explanations to justify why an item is recommended to a user. Many models treat review-generation as a proxy of explainable recommendation. Although they are able to generate fluent and grammatical sentences, they suffer from generality and hallucination issues. We propose a personalized, aspect-controlled model called Multi-Aspect Prompt LEarner (MAPLE), in which it integrates aspect category as another input dimension to facilitate the memorization of fine-grained aspect terms. Experiments on two real-world review datasets in restaurant domain show that MAPLE outperforms the baseline review-generation models in terms of text and feature diversity while maintaining excellent coherence and factual relevance. We further treat MAPLE as a retriever component in the retriever-reader framework and employ a Large-Language Model (LLM) as the reader, showing that MAPLE's explanation along with the LLM's comprehension ability leads to enriched and personalized explanation as a result. We will release the code and data in this http upon acceptance.
Abstract:Word sense disambiguation primarily addresses the lexical ambiguity of common words based on a predefined sense inventory. Conversely, proper names are usually considered to denote an ad-hoc real-world referent. Once the reference is decided, the ambiguity is purportedly resolved. However, proper names also exhibit ambiguities through appellativization, i.e., they act like common words and may denote different aspects of their referents. We proposed to address the ambiguities of proper names through the light of regular polysemy, which we formalized as dot objects. This paper introduces a combined word sense disambiguation (WSD) model for disambiguating common words against Chinese Wordnet (CWN) and proper names as dot objects. The model leverages the flexibility of a gloss-based model architecture, which takes advantage of the glosses and example sentences of CWN. We show that the model achieves competitive results on both common and proper nouns, even on a relatively sparse sense dataset. Aside from being a performant WSD tool, the model further facilitates the future development of the lexical resource.