Abstract:The study of Ukiyo-e, an important genre of pre-modern Japanese art, focuses on the object and style like other artwork researches. Such study has benefited from the renewed interest by the machine learning community in culturally important topics, leading to interdisciplinary works including collections of images, quantitative approaches, and machine learning-based creativities. They, however, have several drawbacks, and it remains challenging to integrate these works into a comprehensive view. To bridge this gap, we propose a holistic approach We first present a large-scale Ukiyo-e dataset with coherent semantic labels and geometric annotations, then show its value in a quantitative study of Ukiyo-e paintings' object using these labels and annotations. We further demonstrate the machine learning methods could help style study through soft color decomposition of Ukiyo-e, and finally provides joint insights into object and style by composing sketches and colors using colorization. Dataset available at https://github.com/rois-codh/arc-ukiyoe-faces
Abstract:From classifying handwritten digits to generating strings of text, the datasets which have received long-time focus from the machine learning community vary greatly in their subject matter. This has motivated a renewed interest in building datasets which are socially and culturally relevant, so that algorithmic research may have a more direct and immediate impact on society. One such area is in history and the humanities, where better and relevant machine learning models can accelerate research across various fields. To this end, newly released benchmarks and models have been proposed for transcribing historical Japanese cursive writing, yet for the field as a whole using machine learning for historical Japanese artworks still remains largely uncharted. To bridge this gap, in this work we propose a new dataset KaoKore which consists of faces extracted from pre-modern Japanese artwork. We demonstrate its value as both a dataset for image classification as well as a creative and artistic dataset, which we explore using generative models. Dataset available at https://github.com/rois-codh/kaokore