Abstract:Combining high-level and low-level visual tasks is a common technique in the field of computer vision. This work integrates the technique of image super resolution to semantic segmentation for document image binarization. It demonstrates that using image super-resolution as a preprocessing step can effectively enhance the results and performance of semantic segmentation.
Abstract:To efficiently extract the textual information from color degraded document images is an important research topic. Long-term imperfect preservation of ancient documents has led to various types of degradation such as page staining, paper yellowing, and ink bleeding; these degradations badly impact the image processing for information extraction. In this paper, we present CCDWT-GAN, a generative adversarial network (GAN) that utilizes the discrete wavelet transform (DWT) on RGB (red, green, blue) channel splited images. The proposed method comprises three stages: image preprocessing, image enhancement, and image binarization. This work conducts comparative experiments in the image preprocessing stage to determine the optimal selection of DWT with normalization. Additionally, we perform an ablation study on the results of the image enhancement stage and the image binarization stage to validate their positive effect on the model performance. This work compares the performance of the proposed method with other state-of-the-art (SOTA) methods on DIBCO and H-DIBCO ((Handwritten) Document Image Binarization Competition) datasets. The experimental results demonstrate that CCDWT-GAN achieves a top two performance on multiple benchmark datasets, and outperforms other SOTA methods.
Abstract:Object detection and single image super-resolution are classic problems in computer vision (CV). The object detection task aims to recognize the objects in input images, while the image restoration task aims to reconstruct high quality images from given low quality images. In this paper, a two-stage framework for object detection and image restoration is proposed. The first stage uses YOLO series algorithms to complete the object detection and then performs image cropping. In the second stage, this work improves Swin Transformer and uses the new proposed algorithm to connect the Swin Transformer layer to design a new neural network architecture. We name the newly proposed network for image restoration SwinOIR. This work compares the model performance of different versions of YOLO detection algorithms on MS COCO dataset and Pascal VOC dataset, demonstrating the suitability of different YOLO network models for the first stage of the framework in different scenarios. For image super-resolution task, it compares the model performance of using different methods of connecting Swin Transformer layers and design different sizes of SwinOIR for use in different life scenarios. Our implementation code is released at https://github.com/Rubbbbbbbbby/SwinOIR.
Abstract:The efficient segmentation of foreground text information from the background in degraded color document images is a hot research topic. Due to the imperfect preservation of ancient documents over a long period of time, various types of degradation, including staining, yellowing, and ink seepage, have seriously affected the results of image binarization. In this paper, a three-stage method is proposed for image enhancement and binarization of degraded color document images by using discrete wavelet transform (DWT) and generative adversarial network (GAN). In Stage-1, we use DWT and retain the LL subband images to achieve the image enhancement. In Stage-2, the original input image is split into four (Red, Green, Blue and Gray) single-channel images, each of which trains the independent adversarial networks. The trained adversarial network models are used to extract the color foreground information from the images. In Stage-3, in order to combine global and local features, the output image from Stage-2 and the original input image are used to train the independent adversarial networks for document binarization. The experimental results demonstrate that our proposed method outperforms many classical and state-of-the-art (SOTA) methods on the Document Image Binarization Contest (DIBCO) dataset. We release our implementation code at https://github.com/abcpp12383/ThreeStageBinarization.