Abstract:Since the development of photography art, many so-called "templates" have been formed, namely visual styles summarized from a series of themed and stylized photography works. In this paper, we propose to analysize and and summarize these 'templates' in photography by learning composite templates of photography images. We present a framework for learning a hierarchical reconfigurable image template from photography images to learn and characterize the "templates" used in these photography images. Using this method, we measured the artistic quality of photography on the photos and conducted photography guidance. In addition, we also utilized the "templates" for guidance in several image generation tasks. Experimental results show that the learned templates can well describe the photography techniques and styles, whereas the proposed approach can assess the quality of photography images as human being does.
Abstract:With the continuous development of social software and multimedia technology, images have become a kind of important carrier for spreading information and socializing. How to evaluate an image comprehensively has become the focus of recent researches. The traditional image aesthetic assessment methods often adopt single numerical overall assessment scores, which has certain subjectivity and can no longer meet the higher aesthetic requirements. In this paper, we construct an new image attribute dataset called aesthetic mixed dataset with attributes(AMD-A) and design external attribute features for fusion. Besides, we propose a efficient method for image aesthetic attribute assessment on mixed multi-attribute dataset and construct a multitasking network architecture by using the EfficientNet-B0 as the backbone network. Our model can achieve aesthetic classification, overall scoring and attribute scoring. In each sub-network, we improve the feature extraction through ECA channel attention module. As for the final overall scoring, we adopt the idea of the teacher-student network and use the classification sub-network to guide the aesthetic overall fine-grain regression. Experimental results, using the MindSpore, show that our proposed method can effectively improve the performance of the aesthetic overall and attribute assessment.