Abstract:Industrial quality inspection plays a critical role in modern manufacturing by identifying defective products during production. While single-modality approaches using either 3D point clouds or 2D RGB images suffer from information incompleteness, multimodal anomaly detection offers promise through the complementary fusion of crossmodal data. However, existing methods face challenges in effectively integrating unimodal results and improving discriminative power. To address these limitations, we first reinterpret memory bank-based anomaly scores in single modalities as isotropic Euclidean distances in local feature spaces. Dynamically evolving from Eulidean metrics, we propose a novel \underline{G}eometry-\underline{G}uided \underline{S}core \underline{F}usion (G$^{2}$SF) framework that progressively learns an anisotropic local distance metric as a unified score for the fusion task. Through a geometric encoding operator, a novel Local Scale Prediction Network (LSPN) is proposed to predict direction-aware scaling factors that characterize first-order local feature distributions, thereby enhancing discrimination between normal and anomalous patterns. Additionally, we develop specialized loss functions and score aggregation strategy from geometric priors to ensure both metric generalization and efficacy. Comprehensive evaluations on the MVTec-3D AD dataset demonstrate the state-of-the-art detection performance of our method with low positive rate and better recall, which is essential in industrial application, and detailed ablation analysis validates each component's contribution.
Abstract:Surface anomaly classification is critical for manufacturing system fault diagnosis and quality control. However, the following challenges always hinder accurate anomaly classification in practice: (i) Anomaly patterns exhibit intra-class variation and inter-class similarity, presenting challenges in the accurate classification of each sample. (ii) Despite the predefined classes, new types of anomalies can occur during production that require to be detected accurately. (iii) Anomalous data is rare in manufacturing processes, leading to limited data for model learning. To tackle the above challenges simultaneously, this paper proposes a novel deep subspace learning-based 3D anomaly classification model. Specifically, starting from a lightweight encoder to extract the latent representations, we model each class as a subspace to account for the intra-class variation, while promoting distinct subspaces of different classes to tackle the inter-class similarity. Moreover, the explicit modeling of subspaces offers the capability to detect out-of-distribution samples, i.e., new types of anomalies, and the regularization effect with much fewer learnable parameters of our proposed subspace classifier, compared to the popular Multi-Layer Perceptions (MLPs). Extensive numerical experiments demonstrate our method achieves better anomaly classification results than benchmark methods, and can effectively identify the new types of anomalies.
Abstract:There are a variety of industrial products that possess periodic textures or surfaces, such as carbon fiber textiles and display panels. Traditional image-based quality inspection methods for these products require identifying the periodic patterns from normal images (without anomaly and noise) and subsequently detecting anomaly pixels with inconsistent appearances. However, it remains challenging to accurately extract the periodic pattern from a single image in the presence of unknown anomalies and measurement noise. To deal with this challenge, this paper proposes a novel self-representation of the periodic image defined on a set of continuous parameters. In this way, periodic pattern learning can be embedded into a joint optimization framework, which is named periodic-sparse decomposition, with simultaneously modeling the sparse anomalies and Gaussian noise. Finally, for the real-world industrial images that may not strictly satisfy the periodic assumption, we propose a novel pixel-level anomaly scoring strategy to enhance the performance of anomaly detection. Both simulated and real-world case studies demonstrate the effectiveness of the proposed methodology for periodic pattern learning and anomaly detection.
Abstract:Image-based inspection systems have been widely deployed in manufacturing production lines. Due to the scarcity of defective samples, unsupervised anomaly detection that only leverages normal samples during training to detect various defects is popular. Existing feature-based methods, utilizing deep features from pretrained neural networks, show their impressive performance in anomaly localization and the low demand for the sample size for training. However, the detected anomalous regions of these methods always exhibit inaccurate boundaries, which impedes the downstream tasks. This deficiency is caused: (i) The decreased resolution of high-level features compared with the original image, and (ii) The mixture of adjacent normal and anomalous pixels during feature extraction. To address them, we propose a novel unified optimization framework (F2PAD) that leverages the Feature-level information to guide the optimization process for Pixel-level Anomaly Detection in the inference stage. The proposed framework is universal and plug-and-play, which can enhance various feature-based methods with limited assumptions. Case studies are provided to demonstrate the effectiveness of our strategy, particularly when applied to three popular backbone methods: PaDiM, CFLOW-AD, and PatchCore.
Abstract:The surface quality inspection of manufacturing parts based on 3D point cloud data has attracted increasing attention in recent years. The reason is that the 3D point cloud can capture the entire surface of manufacturing parts, unlike the previous practices that focus on some key product characteristics. However, achieving accurate 3D anomaly detection is challenging, due to the complex surfaces of manufacturing parts and the difficulty of collecting sufficient anomaly samples. To address these challenges, we propose a novel untrained anomaly detection method based on 3D point cloud data for complex manufacturing parts, which can achieve accurate anomaly detection in a single sample without training data. In the proposed framework, we transform an input sample into two sets of profiles along different directions. Based on one set of the profiles, a novel segmentation module is devised to segment the complex surface into multiple basic and simple components. In each component, another set of profiles, which have the nature of similar shapes, can be modeled as a low-rank matrix. Thus, accurate 3D anomaly detection can be achieved by using Robust Principal Component Analysis (RPCA) on these low-rank matrices. Extensive numerical experiments on different types of parts show that our method achieves promising results compared with the benchmark methods.