Abstract:There are a variety of industrial products that possess periodic textures or surfaces, such as carbon fiber textiles and display panels. Traditional image-based quality inspection methods for these products require identifying the periodic patterns from normal images (without anomaly and noise) and subsequently detecting anomaly pixels with inconsistent appearances. However, it remains challenging to accurately extract the periodic pattern from a single image in the presence of unknown anomalies and measurement noise. To deal with this challenge, this paper proposes a novel self-representation of the periodic image defined on a set of continuous parameters. In this way, periodic pattern learning can be embedded into a joint optimization framework, which is named periodic-sparse decomposition, with simultaneously modeling the sparse anomalies and Gaussian noise. Finally, for the real-world industrial images that may not strictly satisfy the periodic assumption, we propose a novel pixel-level anomaly scoring strategy to enhance the performance of anomaly detection. Both simulated and real-world case studies demonstrate the effectiveness of the proposed methodology for periodic pattern learning and anomaly detection.
Abstract:Image-based inspection systems have been widely deployed in manufacturing production lines. Due to the scarcity of defective samples, unsupervised anomaly detection that only leverages normal samples during training to detect various defects is popular. Existing feature-based methods, utilizing deep features from pretrained neural networks, show their impressive performance in anomaly localization and the low demand for the sample size for training. However, the detected anomalous regions of these methods always exhibit inaccurate boundaries, which impedes the downstream tasks. This deficiency is caused: (i) The decreased resolution of high-level features compared with the original image, and (ii) The mixture of adjacent normal and anomalous pixels during feature extraction. To address them, we propose a novel unified optimization framework (F2PAD) that leverages the Feature-level information to guide the optimization process for Pixel-level Anomaly Detection in the inference stage. The proposed framework is universal and plug-and-play, which can enhance various feature-based methods with limited assumptions. Case studies are provided to demonstrate the effectiveness of our strategy, particularly when applied to three popular backbone methods: PaDiM, CFLOW-AD, and PatchCore.
Abstract:The surface quality inspection of manufacturing parts based on 3D point cloud data has attracted increasing attention in recent years. The reason is that the 3D point cloud can capture the entire surface of manufacturing parts, unlike the previous practices that focus on some key product characteristics. However, achieving accurate 3D anomaly detection is challenging, due to the complex surfaces of manufacturing parts and the difficulty of collecting sufficient anomaly samples. To address these challenges, we propose a novel untrained anomaly detection method based on 3D point cloud data for complex manufacturing parts, which can achieve accurate anomaly detection in a single sample without training data. In the proposed framework, we transform an input sample into two sets of profiles along different directions. Based on one set of the profiles, a novel segmentation module is devised to segment the complex surface into multiple basic and simple components. In each component, another set of profiles, which have the nature of similar shapes, can be modeled as a low-rank matrix. Thus, accurate 3D anomaly detection can be achieved by using Robust Principal Component Analysis (RPCA) on these low-rank matrices. Extensive numerical experiments on different types of parts show that our method achieves promising results compared with the benchmark methods.