Surface anomaly classification is critical for manufacturing system fault diagnosis and quality control. However, the following challenges always hinder accurate anomaly classification in practice: (i) Anomaly patterns exhibit intra-class variation and inter-class similarity, presenting challenges in the accurate classification of each sample. (ii) Despite the predefined classes, new types of anomalies can occur during production that require to be detected accurately. (iii) Anomalous data is rare in manufacturing processes, leading to limited data for model learning. To tackle the above challenges simultaneously, this paper proposes a novel deep subspace learning-based 3D anomaly classification model. Specifically, starting from a lightweight encoder to extract the latent representations, we model each class as a subspace to account for the intra-class variation, while promoting distinct subspaces of different classes to tackle the inter-class similarity. Moreover, the explicit modeling of subspaces offers the capability to detect out-of-distribution samples, i.e., new types of anomalies, and the regularization effect with much fewer learnable parameters of our proposed subspace classifier, compared to the popular Multi-Layer Perceptions (MLPs). Extensive numerical experiments demonstrate our method achieves better anomaly classification results than benchmark methods, and can effectively identify the new types of anomalies.