Abstract:Solving the optimal power flow (OPF) problem is a fundamental task to ensure the system efficiency and reliability in real-time electricity grid operations. We develop a new topology-informed graph neural network (GNN) approach for predicting the optimal solutions of real-time ac-OPF problem. To incorporate grid topology to the NN model, the proposed GNN-for-OPF framework innovatively exploits the locality property of locational marginal prices and voltage magnitude. Furthermore, we develop a physics-aware (ac-)flow feasibility regularization approach for general OPF learning. The advantages of our proposed designs include reduced model complexity, improved generalizability and feasibility guarantees. By providing the analytical understanding on the graph subspace stability under grid topology contingency, we show the proposed GNN can quickly adapt to varying grid topology by an efficient re-training strategy. Numerical tests on various test systems of different sizes have validated the prediction accuracy, improved flow feasibility, and topology adaptivity capability of our proposed GNN-based learning framework.
Abstract:Solving the optimal power flow (OPF) problem in real-time electricity market improves the efficiency and reliability in the integration of low-carbon energy resources into the power grids. To address the scalability and adaptivity issues of existing end-to-end OPF learning solutions, we propose a new graph neural network (GNN) framework for predicting the electricity market prices from solving OPFs. The proposed GNN-for-OPF framework innovatively exploits the locality property of prices and introduces physics-aware regularization, while attaining reduced model complexity and fast adaptivity to varying grid topology. Numerical tests have validated the learning efficiency and adaptivity improvements of our proposed method over existing approaches.
Abstract:The Structural Similarity (SSIM) Index is a very widely used image/video quality model that continues to play an important role in the perceptual evaluation of compression algorithms, encoding recipes and numerous other image/video processing algorithms. Several public implementations of the SSIM and Multiscale-SSIM (MS-SSIM) algorithms have been developed, which differ in efficiency and performance. This "bendable ruler" makes the process of quality assessment of encoding algorithms unreliable. To address this situation, we studied and compared the functions and performances of popular and widely used implementations of SSIM, and we also considered a variety of design choices. Based on our studies and experiments, we have arrived at a collection of recommendations on how to use SSIM most effectively, including ways to reduce its computational burden.