Abstract:Graph Coloring Problem (GCP) is a classic combinatorial optimization problem that has a wide application in theoretical research and engineering. To address complicated GCPs efficiently, a distribution evolutionary algorithm based on population of probability models (DEA-PPM) is proposed. Based on a novel representation of probability model, DEA-PPM employs a Gaussian orthogonal search strategy to explore the probability space, by which global exploration can be realized using a small population. With assistance of local exploitation on a small solution population, DEA-PPM strikes a good balance between exploration and exploitation. Numerical results demonstrate that DEA-PPM performs well on selected complicated GCPs, which contributes to its competitiveness to the state-of-the-art metaheuristics.
Abstract:When evolutionary algorithms (EAs) are unlikely to locate precise global optimal solutions with satisfactory performances, it is important to substitute alternative theoretical routine for the analysis of hitting time/running time. In order to narrow the gap between theories and applications, this paper is dedicated to perform an analysis on approximation error of EAs. First, we proposed a general result on upper bound and lower bound of approximation errors. Then, several case studies are performed to present the routine of error analysis, and theoretical results show the close connections between approximation errors and eigenvalues of transition matrices. The analysis validates applicability of error analysis, demonstrates significance of estimation results, and then, exhibits its potential to be applied for theoretical analysis of elitist EAs.