Abstract:To glean the benefits offered by massive multi-input multi-output (MIMO) systems, channel state information must be accurately acquired. Despite the high accuracy, the computational complexity of classical linear minimum mean squared error (MMSE) estimator becomes prohibitively high in the context of massive MIMO, while the other low-complexity methods degrade the estimation accuracy seriously. In this paper, we develop a novel rank-1 subspace channel estimator to approximate the maximum likelihood (ML) estimator, which outperforms the linear MMSE estimator, but incurs a surprisingly low computational complexity. Our method first acquires the highly accurate angle-of-arrival (AoA) information via a constructed space-embedding matrix and the rank-1 subspace method. Then, it adopts the post-reception beamforming to acquire the unbiased estimate of channel gains. Furthermore, a fast method is designed to implement our new estimator. Theoretical analysis shows that the extra gain achieved by our method over the linear MMSE estimator grows according to the rule of O($\log_{10}M$), while its computational complexity is linearly scalable to the number of antennas $M$. Numerical simulations also validate the theoretical results. Our new method substantially extends the accuracy-complexity region and constitutes a promising channel estimation solution to the emerging massive MIMO communications.
Abstract:In emerging Internet-of-Nano-Thing (IoNT), information will be embedded and conveyed in the form of molecules through complex and diffusive medias. One main challenge lies in the long-tail nature of the channel response causing inter-symbol-interference (ISI), which deteriorates the detection performance. If the channel is unknown, we cannot easily achieve traditional coherent channel estimation and cancellation, and the impact of ISI will be more severe. In this paper, we develop a novel high-dimensional non-coherent scheme for blind detection of molecular signals. We achieve this in a higher-dimensional metric space by combining different non-coherent metrics that exploit the transient features of the signals. By deducing the theoretical bit error rate (BER) for any constructed high-dimensional non-coherent metric, we prove that, higher dimensionality always achieves a lower BER in the same sample space. Then, we design a generalised blind detection algorithm that utilizes the Parzen approximation and its probabilistic neural network (Parzen-PNN) to detect information bits. Taking advantages of its fast convergence and parallel implementation, our proposed scheme can meet the needs of detection accuracy and real-time computing. Numerical simulations demonstrate that our proposed scheme can gain 10dB BER compared with other state of the art methods.
Abstract:Extracting and detecting spike activities from the fluorescence observations is an important step in understanding how neuron systems work. The main challenge lies in that the combination of the ambient noise with dynamic baseline fluctuation, often contaminates the observations, thereby deteriorating the reliability of spike detection. This may be even worse in the face of the nonlinear biological process, the coupling interactions between spikes and baseline, and the unknown critical parameters of an underlying physiological model, in which erroneous estimations of parameters will affect the detection of spikes causing further error propagation. In this paper, we propose a random finite set (RFS) based Bayesian approach. The dynamic behaviors of spike sequence, fluctuated baseline and unknown parameters are formulated as one RFS. This RFS state is capable of distinguishing the hidden active/silent states induced by spike and non-spike activities respectively, thereby \emph{negating the interaction role} played by spikes and other factors. Then, premised on the RFS states, a Bayesian inference scheme is designed to simultaneously estimate the model parameters, baseline, and crucial spike activities. Our results demonstrate that the proposed scheme can gain an extra $12\%$ detection accuracy in comparison with the state-of-the-art MLSpike method.
Abstract:In this paper, we consider a mesh-structured unmanned aerial vehicle (UAV) networks exploiting partially overlapping channels (POCs). For general data-collection tasks in UAV networks, we aim to optimize the network throughput with constraints on transmission power and quality of service (QoS). As far as the highly mobile and constantly changing UAV networks are concerned, unfortunately, most existing methods rely on definite information which is vulnerable to the dynamic environment, rendering system performance to be less effective. In order to combat dynamic topology and varying interference of UAV networks, a robust and distributed learning scheme is proposed. Rather than the perfect channel state information (CSI), we introduce uncertainties to characterize the dynamic channel gains among UAV nodes, which are then interpreted with fuzzy numbers. Instead of the traditional observation space where the channel capacity is a crisp reward, we implement the learning and decision process in a mapped fuzzy space. This allows the system to achieve a smoother and more robust performance by optimizing in an alternate space. To this end, we design a fuzzy payoffs function (FPF) to describe the fluctuated utility, and the problem of POCs assignment is formulated as a fuzzy payoffs game (FPG). Assisted by an attractive property of fuzzy bi-matrix games, the existence of fuzzy Nash equilibrium (FNE) for our formulated FPG is proved. Our robust fuzzy-learning algorithm could reach the equilibrium solution via a least-deviation method. Finally, numerical simulations are provided to demonstrate the advantages of our new scheme over the existing scheme.
Abstract:Detecting anomalies and discovering driving signals is an essential component of scientific research and industrial practice. Often the underlying mechanism is highly complex, involving hidden evolving nonlinear dynamics and noise contamination. When representative physical models and large labeled data sets are unavailable, as is the case with most real-world applications, model-dependent Bayesian approaches would yield misleading results, and most supervised learning machines would also fail to reliably resolve the intricately evolving systems. Here, we propose an unsupervised machine-learning approach that operates in a well-constructed function space, whereby the evolving nonlinear dynamics are captured through a linear functional representation determined by the Koopman operator. This breakthrough leverages on the time-feature embedding and the ensuing reconstruction of a phase-space representation of the dynamics, thereby permitting the reliable identification of critical global signatures from the whole trajectory. This dramatically improves over commonly used static local features, which are vulnerable to unknown transitions or noise. Thanks to its data-driven nature, our method excludes any prior models and training corpus. We benchmark the astonishing accuracy of our method on three diverse and challenging problems in: biology, medicine, and engineering. In all cases, it outperforms existing state-of-the-art methods. As a new unsupervised information processing paradigm, it is suitable for ubiquitous nonlinear dynamical systems or end-users with little expertise, which permits an unbiased excavation of underlying working principles or intrinsic correlations submerged in unlabeled data flows.