Abstract:With the growing demand for massive internet of things (IoT), new IoT technology, namely ambient IoT (A-IoT), has been studied in the 3rd Generation Partnership Project (3GPP). A-IoT devices are batteryless and consume ultra-low power, relying on energy harvesting and energy storage to capture a small amount of energy for communication. A promising usecase of A-IoT is inventory, where a reader communicates with hundreds of A-IoT devices to identify them. However, energy harvesting required before communication can significantly delay or even fail inventory completion. In this work, solutions including duty cycled monitoring (DCM), device grouping and low-power receiving chain are proposed. Evaluation results show that the time required for a reader to complete an inventory procedure for hundreds of A-IoT devices can be reduced by 50% to 83% with the proposed methods.
Abstract:This paper presents a comprehensive study on low-complexity waveform, modulation and coding (WMC) designs for the 3rd Generation Partnership Project (3GPP) Ambient Internet of Things (A-IoT). A-IoT is a low-cost, low-power IoT system inspired by Ultra High Frequency (UHF) Radio Frequency Identification (RFID) and aims to leverage existing cellular network infrastructure for efficient RF tag management. The paper compares the physical layer (PHY) design challenges and requirements of RFID and A-IoT, particularly focusing on backscatter communications. An overview of the standardization for PHY designs in Release 19 A-IoT is provided, along with detailed schemes of the proposed low-complex WMC designs. The performance of device-to-reader link designs is validated through simulations, demonstrating 6 dB improvements of the proposed baseband waveform with coherent receivers compared to RFID line coding-based solutions with non-coherent receivers when channel coding is adopted.