Abstract:Current quantum generative adversarial networks (QGANs) still struggle with practical-sized data. First, many QGANs use principal component analysis (PCA) for dimension reduction, which, as our studies reveal, can diminish the QGAN's effectiveness. Second, methods that segment inputs into smaller patches processed by multiple generators face scalability issues. In this work, we propose LSTM-QGAN, a QGAN architecture that eliminates PCA preprocessing and integrates quantum long short-term memory (QLSTM) to ensure scalable performance. Our experiments show that LSTM-QGAN significantly enhances both performance and scalability over state-of-the-art QGAN models, with visual data improvements, reduced Frechet Inception Distance scores, and reductions of 5x in qubit counts, 5x in single-qubit gates, and 12x in two-qubit gates.
Abstract:Variational quantum circuits (VQCs) have become a powerful tool for implementing Quantum Neural Networks (QNNs), addressing a wide range of complex problems. Well-trained VQCs serve as valuable intellectual assets hosted on cloud-based Noisy Intermediate Scale Quantum (NISQ) computers, making them susceptible to malicious VQC stealing attacks. However, traditional model extraction techniques designed for classical machine learning models encounter challenges when applied to NISQ computers due to significant noise in current devices. In this paper, we introduce QuantumLeak, an effective and accurate QNN model extraction technique from cloud-based NISQ machines. Compared to existing classical model stealing techniques, QuantumLeak improves local VQC accuracy by 4.99\%$\sim$7.35\% across diverse datasets and VQC architectures.
Abstract:We propose a circuit-level backdoor attack, \textit{QTrojan}, against Quantum Neural Networks (QNNs) in this paper. QTrojan is implemented by few quantum gates inserted into the variational quantum circuit of the victim QNN. QTrojan is much stealthier than a prior Data-Poisoning-based Backdoor Attack (DPBA), since it does not embed any trigger in the inputs of the victim QNN or require the access to original training datasets. Compared to a DPBA, QTrojan improves the clean data accuracy by 21\% and the attack success rate by 19.9\%.